Advertisement

Dynamic Actin Interaction of Cross-Bridges During Force Generation: Implications for Cross-Bridge Action in Muscle

  • Bernhard Brenner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

The force response of Ca2+ -activated, permeabilized segments of rabbit psoas muscle fibers to stretches and releases was studied. These length changes were imposed (i) during isometric steady state contraction, (ii) as a restretch at the end of a ramp-shaped prerelease, and (iii) during isotonic steady state shortening. The speed of the stretches/releases was varied between about 10 and 105 (nm/halfsarcomere)/s. At physiological ionic strength and at low temperature (5°C), the force response to stretches apparently is neither affected by cross-bridges that occupy weak-binding states nor by redistribution among various attached force-generating states. Plots of force vs. imposed length change (“T-plots”) and plots of apparent fiber stiffness vs. speed of the imposed length change (“stiffhess-speed relations”) recorded under all these conditions suggest that cross-bridges, even during force-generation, dissociate and reassociate from and to actin on a time scale that is fast compared to active cross-bridge cycling (> 50- 1000s-1 vs. 1-10s-1). This rapid dissociation/reassociation of force-generating cross-bridges may provide a mechanism to account for the unexpectedly low ATPase activity during high-speed shortening and for filament sliding exceeding 10–20nm while a cross-bridge passes through the force-generating states.

Keywords

Length Change Rapid Dissociation Permeabilized Fiber Redistribution Reaction Steady State Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brenner, B., Schoenberg, M., Chalovich, J.M., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. USA 79, 7288–7291 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    Brenner, B., Chalovich, J.M., Greene, L.E., Eisenberg, E. & Schoenberg, M. Biophys. J. 50, 685–691 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    Schoenberg, M. & Eisenberg, E. Biophys. J. 48, 863–871. (1985)PubMedCrossRefGoogle Scholar
  4. 4.
    Brenner, B. Basic Res. Cardiol. 81, 1, 1–15 (1986).Google Scholar
  5. 5.
    Brenner, B. Ann. Rev. Physiol. 49, 655–672 (1987).CrossRefGoogle Scholar
  6. 6.
    Huxley, A.F. & Simmons, R.M. Nature 233, 533–538 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    Brenner, B. Pflügers. Arch. 412, R79 (1988).Google Scholar
  8. 8.
    Brenner, B. Proc. Natl. Acad. Sci. USA, 88, 10490–10494 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    Brenner, B. J. Physiol. (Lond.) 426, 40P (1990).Google Scholar
  10. 10.
    Brenner, B. Biophys. J. 41, 99–103 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    Yu, L.C. & Brenner, B. Biophys. J. 55, 441–453 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    Chase, B. & Kushmerick Biophys. J. 53, 935–946 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    Brenner, B. J. Muscle Res. Cell Motility 1, 409–428 (1980).CrossRefGoogle Scholar
  14. 14.
    Brenner, B. & Eisenberg, E. Proc. Natl. Acad. Sci. USA 83, 3542–3546 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    Kuhn, H.J., Güth, K., Drexler, B., Berberich, W., & Rüegg, J.C. Biophys. Struct. Mech. 6, 1–29 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Brenner, B., Yu, L.C. Biophys. J. 48, 829–834 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    Kraft, Th., Yu, L.C., Brenner, B. Biophys. J. 57, 410a (1990).Google Scholar
  18. 18.
    Schoenberg, M. Biophys. J. 48, 467–475 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    Brenner, B. In: Molecular Mechanisms of Muscular Contraction, (ed. J.M. Squire. Macmillan Press Ltd, London, 1990).Google Scholar
  20. 20.
    Brenner, B. Proc. Natl. Acad. Sci. USA 85, 3265–3269 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    HiU, T.L. Prog. Biophys. Mol. Biol. 28, 267–340 (1974).CrossRefGoogle Scholar
  22. 22.
    Eisenberg E., Hiu, T.L. & Chen, Y. Biophys. J. 29, 195 (1980)PubMedCrossRefGoogle Scholar
  23. 23.
    Güth, K. & Kuhn, H.J. Biophys. Struct. Mech. 4, 223–236 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    Lombardi, V. & Piazzesi, G. J. Physiol. (Lond.) 431, 141–171 (1990).Google Scholar
  25. 25.
    Cooke, R. & Bialek, W. Biophys. J. 28, 214–258 (1979).CrossRefGoogle Scholar
  26. 26.
    Marston, S.B. & Taylor, E.W. J. Mol. Biol. 139 573–600 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    Geeves, M.A., Goody, R.S., Gutfreund H. J. Muscle Res. Cell Motility 5, 351–361 (1984).CrossRefGoogle Scholar
  28. 28.
    Taylor, E.W. J. Biol. Chem. 266, 294–302 (1991).PubMedGoogle Scholar
  29. 29.
    Huxley, A.F. Prog. Biophys. 7, 255–318 (1957).Google Scholar
  30. 30.
    Eisenberg, E. & Hill, T.L. Science 227, 999–1006 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    Julian, F.J. & Sollins, M.R. J. Gen Physiol. 66, 287–302 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 361, 131–150 (1985).Google Scholar
  33. 33.
    Brenner, B. Biophys. J. 41, 33a (1983).CrossRefGoogle Scholar
  34. 34.
    Brenner, B. Pflügers Arch. 411, R186 (1988).Google Scholar
  35. 35.
    Kushmerick, M.J., & Davies, R.E. Proc. R. Soc. B 174, 315–353 (1969).CrossRefGoogle Scholar
  36. 36.
    Podolsky, RJ. & Nolan, A.C. Cold Spring Harb. Symp. Quant. Biol. 37, 661–668 (1973).CrossRefGoogle Scholar
  37. 37.
    Kawai, M. Biophys. J. 22, 97–103 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Bernhard Brenner
    • 1
  1. 1.Department of General PhysiologyUniversity of UlmUlmGermany

Personalised recommendations