Asymptotic Description of Electromagnetic Pulse Propagation in a Linear Dispersive Medium

  • Kurt E. Oughstun
  • Judith E. K. Laurens
  • Constantinos M. Balictsis

Abstract

The asymptotic description of linear dispersive pulse propagation phenomena in lossy dielectrics is critically dependent upon the dominant contribution (i.e. the contribution with the least exponential decay) to the propagated field behavior at a given space-time point.

Keywords

Permeability Microwave Attenuation Propa Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Stratton. “Electromagnetic Theory,” McGraw-Hill, New York, (1941), pp. 333–340.MATHGoogle Scholar
  2. 2.
    H.M. Nussenzveig. “Causality and Dispersion Relations,” Academic, New York (1972), ch. 1.Google Scholar
  3. 3.
    G.R. Baldock and T. Bridgeman. “Mathematical Theory of Wave Motion,” Halsted, New York (1981), ch. 5.MATHGoogle Scholar
  4. 4.
    E.T. Capson. “Asymptotic Expansions,” Cambridge University Press, London (1971), ch. 7-8.Google Scholar
  5. 5.
    F.W.J. Olver, Why steepest descents?, SIAM Rev. 12: 228 (1970).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. Sommerfeld, Über die fortpflanzung des lichtes in disperdierenden medien, Ann. Phys. 44: 177 (1914).CrossRefGoogle Scholar
  7. 7.
    L. Brillouin, Über die fortpflanzung des lichtes in disperdierenden medien, Ann. Phys. 44: 203 (1914).CrossRefGoogle Scholar
  8. 8.
    L. Brillouin. “Wave Propagation and Group Velocity,” Academic, New York (1960).MATHGoogle Scholar
  9. 9.
    H. Baerwald, Über die fortpflanzung von Signalen in disperdierenden medien, Ann. Phys. 7: 731 (1930).CrossRefGoogle Scholar
  10. 10.
    K.E. Oughstun and G.C. Sherman, Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium), J. Opt. Soc. Am., B 5: 817 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    K.E. Oughstun and G.C. Sherman, Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium), J. Opt. Soc. Am. A 6: 1394 (1989).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    P. Wyns, D.P. Foty, and K.E. Oughstun, Numerical analysis of the precursor fields in linear dispersive pulse propagation, J. Opt. Soc. Am. A 6: 1421 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    K.E. Oughstun, P. Wyns, and D. Foty, Numerical determination of the signal velocity in dispersive pulse propagation, J. Opt. Soc. Am. A 6: 1430 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Joseph, S.C. Hagness, and A. Taflove, Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses, Opt Lett. 16: 1412 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    S. Shen and K.E. Oughstun, Dispersive pulse propagation in a double resonance Lorentz medium, J. Opt Soc. Am. B 6: 948 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    K.E. Oughstun and G.C. Sherman, Uniform asymptotic descritpion of ultrashort rectangular optical pulse propagation in a linear, causally dispersive medium, Phys. Rev. A 41: 6090 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    K.E. Oughstun and J.E.K. Laurens, Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium, Radio Sci. 26: 245 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    K.E. Oughstun, Pulse propagation in a linear, causally dispersive medium, Proc. IEEE 79: 1379 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Balictsis and K.E. Oughstun, Uniform asymptotic description of ultrashort gaussian pulse propagation in a causal, dispersive dielectric, Phys. Rev. A (submitted).Google Scholar
  20. 20.
    Yu.S. Barash and V.L. Ginzburg, Expressions for the energy density and evolved heat in the electrodynamics of a dispersive and absorptive medium, Sov. Phys. Usp. 19: 263 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    J. McConnell. “Rotational Brownian Motion and Dielectric Theory,” Academic, London (1980).Google Scholar
  22. 22.
    P. Debye. “Polar Molecules,” Dover, New York (1929).MATHGoogle Scholar
  23. 23.
    C.J.F. Böttcher and A. Bordewijk. “Theory of Electric Polarization,” Vol. II, Elsevier, Amsterdam (1980).Google Scholar
  24. 24.
    H.A. Lorentz. “The Theory of Electrons,” 2nd. ed., Dover, New York (1952)Google Scholar
  25. 25.
    L. Rosenfeld. “The Theory of Electrons,” Dover, New York (1965).Google Scholar
  26. 26.
    G. Garrett and D. McCumber, Propagation of a gaussian light pulse through an anomalous dispersion medium, Phys. Rev. A 1: 305 (1970).ADSCrossRefGoogle Scholar
  27. 27.
    J. Jones, On the Propagation of a Pulse through a Dispersive Medium, Amer. J. Phys. 42: 43 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    D. Anderson and J. Askne, Wave packets in strongly dispersive media, Proc. IEEE 62: 1518 (1974).ADSCrossRefGoogle Scholar
  29. 29.
    D. Anderson, J. Askne, and M. Lisak, Wave packets in an absorptive and strongly dispersive medium, Phys. Rev. A 12: 1546 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    D. Anderson and M. Lisak, Analytic study of pulse broadening in dispersive optical fibers, Phys. Rev. A 35: 184 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  • Judith E. K. Laurens
    • 1
  • Constantinos M. Balictsis
    • 1
  1. 1.Department of Computer Science and Electrical EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations