Phospholipid Headgroups as Sensors of Electric Charge

  • Joachim Seelig
Part of the NATO ASI Series book series (NSSA, volume 246)


In 1839 the anatomist T. Schwann published his “Microscopic Investigations on the Similiarity of Structure and Growth of Animals and Plants” in which he provided the first evidence that animals and plants are composed of the same elements, the cells. The new cell theory immediately led to the question of how the cells could manage to move matter from one cell to the other. Around 1900 the biologist E. Overton investigated the transport rate of more than 300 different organic compounds in animal and plant cells. He observed that all compounds which were easily soluble in oil or similar solvents could move through the living protoplast with high speed whereas other compounds which were easily soluble in water but not in ether, alcohol, or oil migrated only slowly. Based on this selective solubility of plant and animal cells he concluded that the outer surface of the cell was impregnated by a substance which had solubility properties similar to those of a fatty oil. In particular, he suggested that the outer cell layer was composed of a mixture of lecithin and cholesterol 1.


Membrane Surface Biological Membrane Quadrupole Splitting Dipole Field Electric Surface Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Overton, Vierteljahresschr. Naturforsch. Ges. Zürich XLIV, 88 (1899).Google Scholar
  2. 2.
    E. Gorter and F. Grendel, J. Exp. Med. 41, 439 (1925).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Finkelstein. “Water Movement through Lipid Bilayers, Pores, and Plasma Membranes. Theory and Reality”, Wiley, New York (1987).Google Scholar
  4. 4.
    V. Luzzati, in: “Biological Membranes”, Vol. 1, pp. 71–123 (Chapman, D., ed.) Academic Press, New York (1968).Google Scholar
  5. 5.
    P.R. Cullis and Kruijff, Biochim. Biophys. Acta 559, 399(1979).PubMedCrossRefGoogle Scholar
  6. 6.
    R.F.A. Zwaal, R.A. Demel, B. Roelofsen, and L.L.M. Van Deenen, Trends Biochem. Sci. 1, 112 (1976).Google Scholar
  7. 7.
    F.D. Gunstone, J.L. Harwood, and F.B. Padley: The Lipid Handbook. Chapman & Hall, London 1986.Google Scholar
  8. 8.
    F.H. Johnson und E.A. Flagler, Science 112, 91–92 (1950); cf. also A.D. Bangham, in: G. Weissmann und R. Clairborne (Hrsg.): Cell Membranes; Biochemistry, Cell Biology and Pathology. HP Publishing, New York 1975, S. 24-34.PubMedCrossRefGoogle Scholar
  9. 9.
    B.P. Hitchock, R. Mason, K.M. Thomas und G.G. Shipley, Proc. Natl. Acad. Sci. USA 71, 3036 (1974).CrossRefGoogle Scholar
  10. 10.
    R.H. Pearson and I. Pascher, Nature (London) 281, 499 (1979).CrossRefGoogle Scholar
  11. 11.
    I. Pascher, S. Sundell, K. Harlos und H. Eibl. Biochim. Biophys. Acta 896, 77 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Büldt, H.U. Gaily, A. Seelig, J. Seelig, und G. Zaccai, Nature (London) 271, 182 (1978).CrossRefGoogle Scholar
  13. 13.
    J. Seelig and P.M. Macdonald, Ace. Chem. Res. 10, 221 (1987).CrossRefGoogle Scholar
  14. 14.
    J. Seelig, P.M. Macdonald, and P.G. Scherer, Biochemistry 26, 7535 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    Ch. Altenbach and J. Seelig, Biochemistry 23, 3913 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    Ch. Altenbach, Thesis, University of Basel, (1984).Google Scholar
  17. 17.
    P.M. Macdonald and J. Seelig, Biochemistry 26, 6292 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    P.M. Macdonald and J. Seelig; Biochemistry 26, 1231 (1987)PubMedCrossRefGoogle Scholar
  19. 19.
    C. Altenbach and J. Seelig, Biochim. Biophys. Acta 818, 410 (1985).CrossRefGoogle Scholar
  20. 20.
    Y. Boulanger, S. Schreier, and I.C.P. Smith, Biochemistry 20, 6824 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Seelig, P.R. Allegrini, and J. Seelig, Biochim. Biophys. Acta 939, 267 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Kuchinka and J. Seelig (1989) Biochemistry 28, 4216 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Beschiaschvili and J. Seelig, Biochemistry 29, 52 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Roux, J.M. Neumann, R.S. Hodges, P. Deveaux, and M. Bloom, Biochemistry 28, 2313 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    C.E. Dempsey and A. Watts, Biochemistry 26, 5803 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Beschiaschvili and J. Seelig, Biochemistry 29, 10995 (1990).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Beschiaschvili and J. Seelig, Biochim. Biophys. Acta 1061, 78 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    P.M. Macdonald and J. Seelig, Biochemistry 27, 6769 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    P.G. Scherer and J. Seelig, EMBO J. 6, 2915 (1987).PubMedGoogle Scholar
  30. 30.
    Bechinger, B. and J. Seelig, Biochemistry 30, 3923 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Seelig, Cell. Biol. Int. Rep. 14, 353 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Joachim Seelig
    • 1
  1. 1.Department of Biophysical ChemistryBiocenter of the University of BaselBaselSwitzerland

Personalised recommendations