Fact or Fiction-Bacterial Growth Rates and Production as Determined by [methyl-3H]-Thymidine?

  • Richard D. Robarts
  • Tamar Zohary
Part of the Advances in Microbial Ecology book series (AMIE, volume 13)

Abstract

Bacteria play key roles in the functioning of natural aquatic systems: they are major decomposers of organic matter and are important in energy and nutrient cycling and transformations. While their importance in the water column and sediments of inland and marine systems is widely acknowledged, there is also growing evidence to their importance in vast regions of the terrestrial subsurface (Ghiorse and Wilson, 1988).

Keywords

Adenine Microalgae Purine Triphosphate Dehydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrechtsen, H.-J., and Winding, A., 1992, Microbial biomass and activity in subsurface sediments from Vejen, Denmark, Microb. Ecol. 23:303–317.Google Scholar
  2. Alongi, D. M., 1988, Bacterial productivity and microbial biomass in tropical mangrove sediments, Microb. Ecol. 15:59–79.Google Scholar
  3. Austin, H. K., and Findlay, S. E. G., 1989, Benthic bacterial biomass and production in the Hudson River estuary, Microb. Ecol. 18:105–116.Google Scholar
  4. Azam, F., and Fuhrman, J. A. 1984, Measurement of bacterioplankton growth in the sea and its regulation by environmental conditions, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P.J. L. Williams, eds.), Plenum Press, New York, pp. 179–196.Google Scholar
  5. Bååth, E., 1990, Thymidine incorporation into soil bacteria, Soil Biol. Biochem. 22:803–810.Google Scholar
  6. Bååth, E., and Johansson, T., 1990, Measurement of bacterial growth rates on the rhizoplane using 3H-thymidine incorporation into DNA, Plant Soil 126:133–139.Google Scholar
  7. Beacham, I. R., Beacham, K., Zaritsky, A., and Pritchard, R. H., 1971, Intracellular thymidine triphosphate concentrations in wild type and in thymine requiring mutants of Escherichia coli 15 and K12, J. Mol. Biol. 60:75–86.PubMedGoogle Scholar
  8. Bell, R. T., 1986, Further verification of the isotope dilution approach for estimating the degree of participation of [3H]thymidine in DNA synthesis in studies of aquatic bacterial production, Appl. Environ. Microbiol. 52:1212–1214.PubMedGoogle Scholar
  9. Bell, R. T., 1990, An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]-thymidine, Limnol. Oceanogr. 35:910–915.Google Scholar
  10. Bell, R. T., 1993, Estimating growth and productivity of heterotrophic bacterioplankton via incorporation of tritiated thymidine, in: Current Methods in Aquatic Microbial Ecology (P. Kemp, B. Sherr, E. Sherr, and J. J. Cole, eds.), Lewis Publ., Chelsea, Mich. (in press).Google Scholar
  11. Bell, R. T., and Ahlgren, I., 1987, Thymidine incorporation and microbial respiration in the surface sediment of a hypereutrophic lake, Limnol. Oceanogr. 32:476–482.Google Scholar
  12. Bell, R. T., and Riemann, B., 1989, Adenine incorporation into DNA as a measure of microbial production in freshwaters, Limnol. Oceanogr. 34:435–444.Google Scholar
  13. Bern, L., 1985, Autoradiographic studies of [methyl-3H]thymidine incorporation in a cyanobacterium (Microcystis wesenbergii]-bacterium association and in selected algae and bacteria, Appl. Environ. Microbiol. 49:232–233.PubMedGoogle Scholar
  14. Bird, D. F., and Karl, D. M., 1991, Spatial patterns of glutamate and thymidine assimilation in Bransfield Strait, Antarctica during and following the austral spring bloom, Deep-Sea Res.38:1057–1075.Google Scholar
  15. Bjømsen, P. K., and Kuparinen, J., 1991, Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean, Mar Ecol. Prog. Ser. 71:185–194.Google Scholar
  16. Bloem, J., Starink, M., Bär-Gilissen, M.-J. B., and Cappenberg, T. E., 1988, Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures, Appl. Environ. Micro biol. 54:3113–3121.Google Scholar
  17. Bloem, J., Ellenbroek, F. M., Bär-Gilissen, M.-J. B., and Cappenberg, T. E., 1989, Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation, Appl. Environ. Microbiol. 55:1787–1795.PubMedGoogle Scholar
  18. Brittain, A. M., and Karl, D. M., 1990, Catabolism of tritiated thymidine by aquatic microbial communities and incorporation of tritium into RNA and protein, Appl. Environ. Microbiol. 56:1245–1254.PubMedGoogle Scholar
  19. Brock, T. D., 1967, Bacterial growth rate in the sea: Direct analysis by thymidine autoradiography, Science 155:81–83.PubMedGoogle Scholar
  20. Brock, T. D., 1971, Microbial growth rates in nature, Bacteriol. Rev. 35:39–58.PubMedGoogle Scholar
  21. Burnison, B. K., and Nuttley, D. J., 1990, Purification of DNA for bacterial productivity estimates, Appl. Environ. Microbiol. 56:362–365.PubMedGoogle Scholar
  22. Carlson, C. A., Stewart, G. J., and Ingraham, J. L., 1985, Thymidine salvage in Pseudomonas stutzeri and Pseudomonas aeruginosa provided by heterologous expression of Escherichia coli thymidine kinase gene, J. Bacteriol. 163:291–295.PubMedGoogle Scholar
  23. Carmen, K. R., Dobbs, F. C., and Guckert, J. B., 1988, Consequences of thymidine catabolism for estimates of bacterial production: An example for a coastal marine sediment, Limnol. Oceanogr. 33:1595–1606.Google Scholar
  24. Cawood, A. H. H., and Savage, J. R. K., 1983, A comparison of the use of bromodeoxyuridine and [3H]thymidine in studies of the cell cycle, Cell Tissue Kinet. 16:51–57.PubMedGoogle Scholar
  25. Cho, B. C., and Azam, F., 1988, Heterotrophic bacterioplankton production measurement by the tritiated thymidine incorporation method, Ergebn. Limnol. 31:153–162.Google Scholar
  26. Christensen, H., Funck-Jensen, D., and Kjøller, A., 1989, Growth rate of rhizosphere bacteria measured directly by the tritiated thymidine incorporation technique, Soil Biol. Biochem. 21:113–117.Google Scholar
  27. Christian, R. R., Hanson, B. B., and Newell, S. Y., 1982, Comparison of methods for measurement of bacterial growth rates in mixed batch cultures, Appl. Environ. Microbiol. 43:1160–1165.PubMedGoogle Scholar
  28. Chróst, R., Overbeck, J., and Wcislo, R., 1988, Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in lake water: Re-examination and methodological comments, Acta Microbiol. Pol. 37:95–112.Google Scholar
  29. Chrzanowski, T. H., 1988, Consequences of accounting for isotopic dilution in thymidine incorporation assays, Appl. Environ. Microbiol. 54:1868–1870.PubMedGoogle Scholar
  30. Cole, J. J., Caraco, N. F., Strayer, D. L., Ochs, C., and Nolan, S., 1989, A detailed organic carbon budget as an ecosystem-level calibration of bacterial respiration in an oligotrophic lake during summer, Limnol. Oceanogr. 34:286–296.Google Scholar
  31. Coveney, M. F., and Wetzel, R. G., 1988, Experimental evaluation of conversion factors for the [3H]thymidine incorporation assay of bacterial secondary productivity, Appl. Environ. Micro biol. 54:2018–2026.Google Scholar
  32. Davis, C. L., 1989, Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment, Appl. Environ. Microbiol. 55:1267–1272.PubMedGoogle Scholar
  33. Douglas, D. J., Novitsky, J. A., and Fournier, R. O., 1987, Microautoradiography-based enumeration of bacteria with estimates of thymidine-specific growth and production rates, Mar. Ecol. Prog. Ser. 36:91–99.Google Scholar
  34. Ducklow, H. W., and Carlson, C. A. 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12:113–181.Google Scholar
  35. Ducklow, H. W., and Hill, S. M., 1985, Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings, Limnol. Oceanogr. 30:260–272.Google Scholar
  36. Ducklow, H. W., Kirchman, D. L., and Quinby, H. L., 1992, Determination of bacterioplankton growth rates during the North Atlantic spring phytoplankton bloom: Cell growth and macro-molecular synthesis in seawater cultures, Microb. Ecol. 24:125–144.Google Scholar
  37. Ellenbroek, F. M., and Cappenberg, T. E., 1991, DNA synthesis and tritiated thymidine incorporation by heterotrophic freshwater bacteria in continuous culture, Appl. Environ. Microbiol. 57:1675–1682.PubMedGoogle Scholar
  38. Fallon, R. D., and Newell, S. Y., 1986, Thymidine incorporation by the microbial community of standing dead Spartina alterniflora, Appl. Environ. Microbiol. 52:1206–1208.PubMedGoogle Scholar
  39. Fallon, R. D., Newell, S. Y., and Hopkinson, C. S., 1983, Bacterial production in marine sediments: Will cell specific measures agree with whole system metabolism? Mar. Ecol. Prog. Ser. 11:119–127.Google Scholar
  40. Findlay, R. H., Pollard, P. C, Moriarty, D. J. W., and White, D. C., 1985, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact, Can. J. Microbiol. 31:493–498.PubMedGoogle Scholar
  41. Findlay, S. E. G., Meyer, J. L., and Edwards, R. T., 1984, Measuring bacterial production via rate of incorporation of [3H]thymidine into DNA, J. Microbiol. Methods 2:57–72.Google Scholar
  42. Findlay, S. E. G., Pace, M. L., Lints, D., Cole, J. J., Caraco, N. F., and Peierls, B., 1991, Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary, Limnol. Oceanogr. 36:286–278.Google Scholar
  43. Forsdyke, D. R., 1971, Application of the isotope dilution principle to the analysis of factors affecting the incorporation of [3H]uridine and [3H]cytidine into cultured lymphocytes, Biochem. J. 125:721–732.PubMedGoogle Scholar
  44. Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California, Appl. Environ. Microbiol. 39:1085–1095.PubMedGoogle Scholar
  45. Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface water: Evaluation and field results, Mar. Biol. 66:109–120.Google Scholar
  46. Fuhrman, J. A., Ducklow, H. W., Kirchman, D. L., Hudak, J., McManus, G. B., and Kramer, J., 1986a, Does adenine incorporation into nucleic acids measure total microbial production? Limnol. Oceanogr. 31:627–636.Google Scholar
  47. Fuhrman, J. A,. Ducklow, H. W., Kirchman, D. L., and McManus, G. B., 1986b, Adenine and total microbial production: A reply, Limnol. Oceanogr. 31:1395–1400.Google Scholar
  48. Gabriel, O., 1987, Biosynthesis of sugar residues for glycogen, peptidoglycan, lipopolysaccharide, and related systems, in: Escherichia coli and Salmonella typhimurium (F. C. Neuhard, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbargar, eds.), Volume 1, American Society for Microbiology, Washington, D.C., pp. 504–511.Google Scholar
  49. Ghiorse, W. C., and Wilson, J. T., 1988, Microbial ecology of the terrestrial subsurface, Adv. Appl. Microbiol. 33:107–172.PubMedGoogle Scholar
  50. Gilmour, C. C., Leavitt, M. E., and Shiaris, M. P., 1990, Evidence against incorporation of exogenous thymidine by sulfate-reducing bacteria, Limnol. Oceanogr. 35:1401–1409.Google Scholar
  51. Grivell, A., and Jackson, J., 1968, Thymidine kinase: Evidence for its absence from Neurospora crassa and some other microorganisms, and the relevance of this to specific labelling of deox-yribonucleic acid, J. Gen. Microbiol. 54:307–317.PubMedGoogle Scholar
  52. Güde, H., 1984, Test for validity of different radioisotope activity measurements by microbial pure and mixed cultures, Ergebn. Limnol. 19:257–266.Google Scholar
  53. Heldal, M., and Bratbak, G., 1991, Production and decay of viruses in aquatic environments, Mar. Ecol. Prog. Ser.72:205–212.Google Scholar
  54. Hobbie, J. E., 1988, A comparison of the ecology of planktonic bacteria in fresh and salt water, Limnol. Oceanogr. 33:750–764.Google Scholar
  55. Hobbie, J. E., and Crawford, C. C, 1969, Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters, Limnol. Oceanogr. 14:528–532.Google Scholar
  56. Hollibaugh, J. T., 1988, Limitations of the [3H]thymidine method for estimating bacterial productivity due to thymidine metabolism, Mar. Ecol. Prog. Ser. 43:19–30.Google Scholar
  57. Hollibaugh, J. T., and Wong, P. S., 1992, Ethanol extractable substrate pools and the incorporation and metabolism of thymidine, L-leucine and other low molecular weight substrates by bacte-rioplankton, Can. J. Microbiol. 38:605–613.Google Scholar
  58. Hollibaugh, J. T., Fuhrman, J. A., and Azam, F. 1980, Radioactive labeling of natural assemblages of bacterioplankton for use in trophic studies, Limnol. Oceanogr. 25:172–181.Google Scholar
  59. Hood, M. A., Guckert, J. B., White, D. C., and Deck, F., 1986, Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae, Appl. Environ. Microbiol. 52:788–793.PubMedGoogle Scholar
  60. Hudson, J. J., Roff, J. C., and Burnison, B. K., 1990, Measuring epilithic bacterial production in streams, Can. J. Fish. Aquat. Sci. 47:1813–1820.Google Scholar
  61. Hutchinson, W. C., and Munro, H. N., 1961, The determination of nucleic acids in biological materials, Analyst 86:768–813.Google Scholar
  62. Jeffrey, W. H., and Paul, J. H., 1988a, Effect of 5-fluoro-2′-deoxyuridine on [3H]thymidine incorporation by bacterioplankton in the waters of southwest Florida, Appl. Environ. Microbiol. 54:331–336.PubMedGoogle Scholar
  63. Jeffrey, W. H., and Paul, J. H., 1988b, Underestimation of DNA synthesis by [3H]thymidine incorporation in marine bacteria, Appl. Environ. Microbiol. 54:3165–3168.PubMedGoogle Scholar
  64. Jeffrey, W. H., and Paul, J. H., 1990, Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates, Appl. Environ. Microbiol. 56:1367–1372.PubMedGoogle Scholar
  65. Jeffrey, W. H., Paul, J. H., Cazares, L. H., DeFlaun, M. F., and David, A. W., 1990, Correlation of nonspecific macromolecular labeling with environmental parameters during [3H]thymidine incorporation in the waters of southwest Florida, Microb. Ecol. 20:21–35.Google Scholar
  66. Johnstone, B. H., and Jones, R. D., 1989, A study on the lack of [methyl-3H]thymidine and uptake and incorporation by chemolithotrophic bacteria, Microb. Ecol. 18:73–77.Google Scholar
  67. Kaplan, L. A., Bott, T. L., and Bielicki, J. K., 1992, Assessment of [3H]thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments, Appl. Environ. Microbiol.58:3614–3621.PubMedGoogle Scholar
  68. Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Micro biol. Rev. 44:739–796.Google Scholar
  69. Karl, D. M., 1982, Selected nucleic acid precursors in studies of aquatic microbial ecology, Appl. Environ. Microbiol.44:891–902.PubMedGoogle Scholar
  70. Karl, D. M., and Bailiff, M. D., 1989, The measurement and distribution of dissolved nucleic acids in aquatic environments, Limnol. Oceanogr. 34:543–558.Google Scholar
  71. Karl, D. M., and Winn, C. D., 1986, Does adenine incorporation into nucleic acids measure total microbial production?: A response to comments by Fuhrman et al., Limnol. Oceanogr. 31:1384–1394.Google Scholar
  72. Kemp, P. F., 1990, The fate of benthic bacterial production, Rev. Aquat. Sci. 2:109–124.Google Scholar
  73. Kirchman, D. L., Ducklow, H. W., and Mitchell, R., 1982, Estimates of bacterial growth from changes in uptake rates and biomass, Appl. Environ. Microbiol. 44:1296–1307.PubMedGoogle Scholar
  74. Kirchman, D. L., K’Nees, E., and Hodson, R., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ. Microbiol. 49:599–607.PubMedGoogle Scholar
  75. Kirchman, D. L., Newell, S. Y., and Hodson, R. E., 1986, Incorporation versus biosynthesis of leucine: Implication for measuring rates of protein synthesis and biomass production by bacteria in marine systems, Mar. Ecol. Prog. Ser. 32:47–59.Google Scholar
  76. Kornberg, A., and Baker, T. A., 1992, DNA Replication ,2nd ed., Freeman, San Francisco.Google Scholar
  77. Kraffzik, B., and Conrad, R., 1991, Thymidine incorporation into lake water bacterioplankton and pure cultures of chemolithotrophic (CO, H2) and methanotrophic bacteria, FEMS Microbiol. Ecol. 23:7–14.Google Scholar
  78. Kunicka-Goldfinger, W., 1976, Determination of growth of aquatic bacteria by measurements of incorporation of tritiated thymidine, Acta Microbiol. Pol. 25:279–286.PubMedGoogle Scholar
  79. Lark, K. G., 1969, Initiation and control of DNA synthesis, Annu. Rev. Biochem. 38:569–604.PubMedGoogle Scholar
  80. Lee, S., and Fuhrman, J. A., 1991, Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridization, Limnol. Oceanogr. 36:1277–1287.Google Scholar
  81. Li, W. K. W., 1983, Consideration of errors in estimating kinetic parameters based on Michaelis-Menten formalism in microbial ecology, Limnol. Oceanogr. 28:185–190.Google Scholar
  82. Lovell, C. R., and Konopka, A., 1985, Primary and bacterial production in two dimictic Indiana lakes, Appl. Environ. Microbiol. 49:485–491.PubMedGoogle Scholar
  83. McDonough, R. J., Sanders, R. W., Porter, K. G., and Kirchman, D. L., 1986, Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion, Appl. Environ. Microbiol. 52:992–1000.PubMedGoogle Scholar
  84. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  85. Mården, P., Hermansson, M., and Kjelleberg, S., 1988, Incorporation of tritiated thymidine by marine bacterial isolates when undergoing a starvation survival response, Arch. Microbiol. 149:427–432.Google Scholar
  86. Moriarty, D. J. W., 1984, Measurement of bacterial growth rates in some marine systems using the incorporation of tritiated thymidine into DNA, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P.J. L. Williams, eds.), Plenum Press, New York, pp. 217–231.Google Scholar
  87. Moriarty, D. J. W., 1986, Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis, Adv. Microb. Ecol. 9:246–292.Google Scholar
  88. Moriarty, D. J. W., and Pollard, P. C., 1981, DNA synthesis as a measure of bacterial productivity in seagrass sediments, Mar. Ecol. Prog. Ser. 5:151–156.Google Scholar
  89. Moriarty, D. J. W., and Pollard, P. C., 1990, Effects of radioactive labelling of macromolecules, disturbance of bacteria and adsorption of thymidine to sediment on the determination of bacterial growth rates in sediments with tritiated thymidine, J. Microbiol. Methods 11:127–139.Google Scholar
  90. Munch-Petersen, A., and Mygind, B., 1983, Transport of nucleic acid precursors, in: Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (A. Munch-Petersen, ed.), Academic Press, New York, pp. 259–305.Google Scholar
  91. Munro, H. N., and Fleck, A., 1966, The determination of nucleic acids, in: Methods of Biochemical Analysis (D. Glick, ed.), Interscience, New York, pp. 113–176.Google Scholar
  92. Murray, R. E., Cooksey, K. E., and Priscu, J. C, 1986, Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia, Appl. Environ. Microbiol. 52:1177–1182.PubMedGoogle Scholar
  93. Murray, R. E., Cooksey, K. E., and Priscu, J. C., 1987, Influence of physical disruption on growth of attached bacteria, Appl. Environ. Microbiol. 53:2997–2999.PubMedGoogle Scholar
  94. Novitsky, J. A., 1983a, Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbour, Canada, Appl. Environ. Microbiol. 45:1753–1760.Google Scholar
  95. Novitsky, J. A., 1983b, Microbial activity at the sediment-water interface in Halifax Harbour, Canada, Appl. Environ. Microbiol. 45:1761–1766.PubMedGoogle Scholar
  96. Novitsky, J. A., 1986, Degradation of dead microbial biomass in a marine sediment, Appl. Environ. Microbiol. 52:504–509.PubMedGoogle Scholar
  97. O’Donovan, G. A., 1978, Thymidine metabolism in bacteria (and ‘How, or how not, to label DNA’), in: DNA Synthesis: Present and Future (I. Molineux and M. Kohiyama, eds.), Plenum Press, New York, pp. 219–253.Google Scholar
  98. O’Donovan, G. A., and Neuhard, J., 1970, Pyrimidine metabolism in microorganisms, Bacteriol. Rev. 34:278–343.PubMedGoogle Scholar
  99. Oren, A., 1990, Thymidine incorporation in saltern ponds of different salinities: Estimation of in situ growth rates of halophilic archaeobacteria and eubacteria, Microb. Ecol. 19:43–51.Google Scholar
  100. Painting, S. J., Lucas, M. I., and Muir, D. G., 1989, Fluctuations in heterotrophic bacterial community structure, activity and production in response to development and decay of phy-toplankton in a microcosm, Mar. Ecol. Prog. Ser. 53:129–141.Google Scholar
  101. Parsons, T. R., and Strickland, J. D. H., 1962, On the production of particulate organic carbon by heterotrophic processes in sea water, Deep Sea Res. 8:211–222.Google Scholar
  102. Paul, J. H., and Carlson, D. J., 1984, Genetic material in the marine environment: Implication for bacterial DNA, Limnol. Oceanogr. 29:1091–1097.Google Scholar
  103. Paul, J. H., Jeffrey, W. H., and DeFlaun, M. F., 1985, Particulate DNA in subtropical oceanic and estuarine planktonic environments, Mar. Biol. 90:95–101.Google Scholar
  104. Paul, J. H., Jeffrey, W. H., and DeFlaun, M. F., 1987, Dynamics of extracellular DNA in the marine environment, Appl. Environ. Microbiol. 53:170–179.PubMedGoogle Scholar
  105. Paul, J. H., Jeffrey, W. H., and DeFlaun, M. F., 1988, Mechanisms of DNA utilization by estaurine microbial populations, Appl. Environ. Microbiol. 54:1682–1688.PubMedGoogle Scholar
  106. Paul, J. H., Jeffrey, W. H., and Cannon, J. P., 1990, Production of dissolved DNA, RNA, and protein by microbial populations in a Florida reservoir, Appl. Environ. Microbiol. 56:2957–2962.PubMedGoogle Scholar
  107. Pedrós-Alió, C., and Newell, S. Y., 1989, Microautoradiographic study of thymidine uptake in brackish waters around Sapelo Island, Georgia, USA, Mar. Ecol. Prog. Ser. 55:83–94.Google Scholar
  108. Pollard, P. C, 1987, Dialysis: A simple method of separating labelled bacterial DNA and tritiated thymidine from aquatic sediments, J. Microbiol. Methods 7:91–101.Google Scholar
  109. Pollard, P. C., and Kogure, K., 1993, Bacterial decomposition of detritus in a tropical seagrass (Syringodium isoetifolium) ecosystem, measured with [methyl-3H]thymidine, Aust. J. Mar. Freshwater Res. 44:155–172.Google Scholar
  110. Pollard, P. C., and Moriarty, D. J. W., 1984, Validity of the tritiated thymidine method for estimating bacterial growth rates: Measurement of isotope dilution during DNA synthesis, Appl. Environ. Microbiol. 48:1076–1083.PubMedGoogle Scholar
  111. Psenner, R., 1990, From image analysis to chemical analysis of bacteria: A long-term study? Limnol. Oceanogr. 35:234–237.Google Scholar
  112. Ramsay, A. J., 1974, The use of autoradiography to determine the proportion of bacteria metabolizing in an aquatic environment, J. Gen. Microbiol. 80:363–373.Google Scholar
  113. Riemann, B., 1984, Determining growth rates of natural assemblages of freshwater bacteria by means of 3H-thymidine incorporation into DNA: Comments on methodology, Arch. Hydrobiol. Beih. 19:67–80.Google Scholar
  114. Riemann, B., and Bell, R. T., 1990, Advances in estimating bacterial biomass and growth in aquatic systems, Arch. Hydrobiol. 118:385–402.Google Scholar
  115. Riemann, B., and Lingaard-Jørgensen, P., 1990, Effects of toxic substances on natural bacterial assemblages determined by means of [3H]thymidine incorporation, Appl. Environ. Microbiol. 56:75–80.PubMedGoogle Scholar
  116. Riemann, B., Fuhrman, J., and Azam, F., 1982, Bacterial secondary production in freshwater bacteria by means of 3H-thymidine incorporation method, Microb. Ecol. 8:101–114.Google Scholar
  117. Riemann, B., Bjørnsen, P. K., Newell, S. Y., and Fallon, R., 1987, Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H]-thymidine, Limnol. Oceanogr. 32:471–476.Google Scholar
  118. Rivkin, R. B., 1986, Incorporation of tritiated thymidine by eucaryotic microalgae, J. Phycol. 22:193–198.Google Scholar
  119. Rivkin, R. B., and Voytek, M. A., 1986, Cell division rates of eucaryotic algae measured by tritiated thymidine incorporation into DNA: Coincident measurements of photosynthesis and cell division of individual species of phytoplankton isolated from natural populations, J. Phycol. 22:199–205.Google Scholar
  120. Robarts, R. D., 1986, Decomposition in freshwater ecosystems, J. Limnol. Soc. S. Afr. 12:72–89.Google Scholar
  121. Robarts, R. D., and Wicks, R. J., 1989, [Methyl-3H]thymidine macromolecular incorporation and lipid labeling: Their significance to DNA labeling during measurements of aquatic bacterial growth rate, Limnol. Oceanogr. 34:213–222.Google Scholar
  122. Robarts, R. D., and Wicks, R. J., 1990, Heterotrophic bacterial production and its dependence on autotrophic production in a hypertrophic African reservoir, Can. J. Fish. Aquat. Sci. 47:1027–1037.Google Scholar
  123. Robarts, R. D., Wicks, R. J., and Sephton, L. M., 1986, Spatial and temporal variations in bacterial macromolecule labeling with [methyl-3H]thymidine in a hypertrophic lake, Appl. Environ. Microbiol. 52:1368–1373.PubMedGoogle Scholar
  124. Roberts, R. B., Abelson, P. H., Cowrie, D. B., Bolton, E. T., and Britten, R. J., 1963, Studies of biosynthesis in Escherichia coli ,Carnegie Institute, Washington, D.C.Google Scholar
  125. Roodyn, D. B., and Mandel, H. G., 1960, A simple membrane fractionation method for determining the distribution of radioactivity in chemical fractions of Bacillus cereus, Biochim. Biophys. Acta 41:80–88.PubMedGoogle Scholar
  126. Rosenbaum-Oliver, D., and Zamenhof, S., 1972, Degree of participation of exogenous thymidine in the overall deoxyribonucleic acid synthesis in Escherichia coli, J. Bacteriol. 110:585–591.PubMedGoogle Scholar
  127. Saito, H., Tomioka, H., and Ohkido, S., 1985, Further studies on thymidine kinase: Distribution pattern of the enzyme in bacteria, J. Gen. Microbiol. 131:3091–3098.PubMedGoogle Scholar
  128. Sanders, R. W., and Porter, K. G., 1986, Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion, Appl. Environ. Microbiol. 52:101–107.PubMedGoogle Scholar
  129. Schmidt, G., and Thannhauser, S. J., 1945, A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues, J. Biol. Chem. 161:83–89.PubMedGoogle Scholar
  130. Schneider, W. C, 1945, Phosphorus compounds in animal tissues: Extraction and estimation of deoxypentose nucleic acid and of pentose nucleic acid, J. Biol. Chem. 161:293–303.PubMedGoogle Scholar
  131. Servais, P., Billen, G., and Vives-Rego, J., 1985, Rate of bacterial mortality in aquatic environments, Appl. Environ. Microbiol. 49:1448–1454.PubMedGoogle Scholar
  132. Servais, P., Martinez, J., Billen, G., and Vives-Rego, J., 1987, Determining [3H]thymidine incorporation into bacterioplankton DNA: Improvement of the method by DNase treatment, Appl. Environ. Microbiol. 53:1977–1979.PubMedGoogle Scholar
  133. Simon, M., and Azam, F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog. Ser. 51:201–213.Google Scholar
  134. Smits, J. D., and Riemann, B., 1988, Calculation of cell production from [3H]thymidine incorporation with freshwater bacteria, Appl. Environ. Microbiol. 54:2213–2219.PubMedGoogle Scholar
  135. Staley, J. T., and Konopka, A., 1985, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Annu. Rev. Microbiol. 39:321–346.PubMedGoogle Scholar
  136. Stock, M. S., and Ward, A. K., 1989, Establishment of a bedrock epilithic community in a small stream: Microbial (algal and bacterial) metabolism and physical structure, Can. J. Fish. Aquat. Sci. 46:1874–1883.Google Scholar
  137. Thomas, D. R., Richardson, J. A., and Dicker, R. J., 1974, The incorporation of tritiated thymidine into DNA as a measure of the activity of soil micro-organisms, Soil Biol. Biochem. 6:293–296.Google Scholar
  138. Thorn, P. M., and Ventullo, R. M., 1988, Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA, Microb. Ecol. 16:3–16.Google Scholar
  139. Tibbies, B. J., Davis, C. L., Harris, J. M., and Lucas, M. I., 1992, Estimates of bacterial productivity in marine sediments and water from a temperature saltmarsh lagoon, Microb. Ecol. 23:195–209.Google Scholar
  140. Tobin, R. S., and Anthony, D. H. J., 1978, Tritiated thymidine incorporation as a measure of microbial activity in lake sediments, Limnol. Oceanogr. 23:161–165.Google Scholar
  141. Torréton, J. P., and Bouvy, M., 1991, Estimating bacterial DNA synthesis from [3H]thymidine incorporation: Discrepancies among macromolecular extraction procedures, Limnol. Oceanogr. 36:299–306.Google Scholar
  142. Van Es, F. B., and Meyer-Reil, L.-A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, Adv. Microb. Ecol. 6:111–170.Google Scholar
  143. Vincent, W. F., and Howard-Williams, C., 1989, Microbial communities in southern Victoria Land streams (Antarctica). II. The effects of low temperature, Hydrobiologia 172:39–49.Google Scholar
  144. Vogels, G. D., and van der Drift, C, 1976, Degradation of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40:403–468.PubMedGoogle Scholar
  145. Wetzel, R. G., and Likens, G. E., 1991, Limnological Analyses ,2nd ed., Springer-Verlag, Berlin.Google Scholar
  146. Wicks, R. J., and Robarts, R. D., 1987, The extraction and purification of DNA labelled with [methyl-3H]thymidine in aquatic bacterial production studies, J. Plankton Res. 9:1159–1166.Google Scholar
  147. Winding, A., 1992, [3H]thymidine incorporation to estimate growth rates of anaerobic bacterial strains, Appl. Environ. Microbiol. 58:2660–2662.PubMedGoogle Scholar
  148. Witzel, K.-P., and Graf, G., 1984, On the use of different nucleic acid precursors for the measurement of microbial nucleic acid turnover, Arch. Hydrobiol. Beih. 19:59–65.Google Scholar
  149. Wright, R. T., and Hobbie, J. E., 1965, The uptake of organic solutes in lake water, Limnol.Oceanogr. 10:22–28.Google Scholar
  150. Zehr, J. P., Harvey, R. W., Oremland, R. S., Cloern, J. E., and George, L. H., 1987, Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass, Limnol. Oceanogr. 32:781–793.Google Scholar
  151. Zohary, T., and Robarts, R. D., 1992, Bacterial numbers, bacterial production, and heterotrophic nanoplankton abundance in a warm core eddy in the Eastern Mediterranean, Mar. Ecol. Prog. Ser. 84:133–137.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Richard D. Robarts
    • 1
  • Tamar Zohary
    • 2
  1. 1.National Hydrology Research InstituteEnvironment CanadaSaskatoonCanada
  2. 2.The Yigal Allon Kinneret LaboratoryTiberiasIsrael

Personalised recommendations