Skip to main content

Decomposition of Shoots of a Salt-Marsh Grass

Methodology and Dynamics of Microbial Assemblages

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 13))

Abstract

Researchers interested in accurately describing natural microbial participation in the decay of portions of vascular plants must try to avoid altering genuine conditions of decay via their methods (Swift et al., 1979; Boulton and Boon, 1991; Newell, 1994). This is an old refrain (e.g., Park, 1974, on the elusive balance between particle retention and shredder admittance using litterbags), but one that continues to go unheeded (e.g., a paper published in 1992 in a leading aquatic-science journal; methods: green shoots of grass cut, dried, and placed in litterbags on or buried in salt-marsh sediment). “The challenge of ecology immediately reveals the correlated dangers, for it is singularly easy to fall into error through a failure to describe accurately the various parts of the system and to appreciate their possible significance. An error at this stage may lead to the development of inapposite experimental techniques, so that the final synthesis must inevitably fail. A constant temptation besetting the ecologist is that of loose thinking to enable him to gloss over intractable parts of his study” (Griffin, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, S. K., 1979, Diet of the periwinkle Littorina irrorata in a Louisiana salt-marsh, Gulf Res. Rep. 6:293–295.

    Google Scholar 

  • Anderson, J. M., 1991, The effects of climate change on decomposition processes in grassland and coniferous forests, Ecol. Appl. 1:326–347.

    Google Scholar 

  • Andrén, O., and Paustian, K., 1987, Barley straw decomposition in the field: A comparison of models, Ecology 68:1190–1200.

    Google Scholar 

  • Arenovski, A. L., and Howes, B. L., 1992, Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora, Oecologia 90:316–322.

    Google Scholar 

  • Armstrong, J., Armstrong, W., and Beckett, P. M., 1992, Phragmites australis: Venturi-and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation, New Phytol. 120:197–207.

    Google Scholar 

  • Azam, F., Cho, B.C., Smith, D. C., and Simon, M., 1990, Bacterial cycling of matter in the pelagic zone of aquatic ecosystems, in: Large Lakes (M. M. Tilzer and C. Serruya, eds.), Springer, Berlin, pp. 477–488.

    Google Scholar 

  • Bärlocher, F., 1985, The role of fungi in the nutrition of stream invertebrates, Bot. J. Linn. Soc. 91:83–94.

    Google Scholar 

  • Bärlocher, F., 1991, Fungal colonization of fresh and dried leaves in the River Teign (Devon, England), Nova Hedwigia 52:349–357.

    Google Scholar 

  • Bärlocher, F. (ed.), 1992, The Ecology of Aquatic Hyphomycetes ,Springer, Berlin.

    Google Scholar 

  • Bärlocher, F., Arsuffi, T. L., and Newell, S. Y., 1989a, Digestive enzymes of the saltmarsh periwinkle Littorina irrorata (Mollusca: Gastropoda), Oecologia 80:39–43.

    PubMed  Google Scholar 

  • Bärlocher, F., Newell, S. Y., and Arsuffi, T. L., 1989b, Digestion of Spartina alterniflora Loisel. material with and without fungal constituents by the periwinkle Littorina irrorata Say (Mollusca:Gastropoda), J. Exp. Mar. Biol. Ecol. 130:45–53.

    Google Scholar 

  • Bebout, B. M., 1988, The Role of Marine Fungi in the Food Selection and Nutrition of the Salt Marsh Periwinkle Littorina irrorata Say (Gastropoda) ,Master’s thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Bengtsson, G., 1992, Interactions between fungi, bacteria and beech leaves in a stream microcosm, Oecologia 89:542–549.

    Google Scholar 

  • Benner, R., Newell, S. Y., Maccubbin, A. E., and Hodson, R. E., 1984, Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments, Appl. Environ. Microbiol. 48:36–40.

    PubMed  CAS  Google Scholar 

  • Benner, R., Maccubbin, A. E., and Hodson, R. E., 1986, Temporal relationship between the deposition and microbial degradation of lignocellulosic detritus in a Georgia salt-marsh and the Okefenokee Swamp, Microb. Ecol. 12:291–298.

    CAS  Google Scholar 

  • Benner, R., Lay, J., K’nees, E., and Hodson, R. E., 1988, Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus-based food webs, Limnol. Oceanogr. 33:1514–1526.

    CAS  Google Scholar 

  • Benner, R., Fogel, M. L., and Sprague, E. K., 1991, Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments, Limnol. Oceanogr. 36:1358–1374.

    CAS  Google Scholar 

  • Bergbauer, M., and Newell, S. Y., 1992, Contribution to lignocellulose degradation and DOC formation from a salt-marsh macrophyte by the ascomycete Phaeosphaeria spartinicola, FEMS Microbiol. Ecol. 86:341–348.

    CAS  Google Scholar 

  • Bertness, M. D., 1984, Ribbed mussels and Spartina alterniflora production in a New England salt-marsh,Ecology 65:1794–1807.

    Google Scholar 

  • Bingham, F. O., 1972, The influence of environmental stimuli on the direction of movement of the supralittoral gastropod Littorina irrorata, Bull. Mar. Sci. 22:309–335.

    Google Scholar 

  • Boesch, D. F., and Turner, R. E., 1984, Dependence of fishery species on salt marshes: The role of food and refuge, Estuaries 7:460–468.

    Google Scholar 

  • Boulton, A. J., and Boon, P. I., 1991, A review of methodology used to measure leaf litter decomposition in lotic environments: Time to turn over an old leaf? Aust. J. Mar. Freshwater Res. 42:1–43.

    Google Scholar 

  • Bowen, S. H., 1987, Composition and nutritional value of detritus, in: Detritus and Microbial Ecology in Aquaculture (D. J. W. Moriarty and R. S. V. Pullin, eds.), Int. Ctr. Living Aquatic Res. Mgt., Manila, Philippines, pp. 192–216.

    Google Scholar 

  • Boyd, P. E., 1981, Ecology of Three Arenicolous Marine Fungi: I. Their Role in the Diet of the Beachhopper Orchestia grillus, and II. The influence of Temperature on the Seasonal and Geographic Distribution of Asteromyces cruciatus, Sigmoidea marina, and Varicosporina ramulosa, Master’s thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Bruquetas de Zozaya, I. Y., and Neiff, J. J., 1991, Decomposition and colonization by invertebrates of Typha latifolia L. litter in Chaco cattail swamp (Argentina), Aquat. Bot. 40:185–193.

    Google Scholar 

  • Buchsbaum, R., Valiela, I., Swain, T., Dzierzeski, M., and Allen, S., 1991, Available and refractory nitrogen in detritus of coastal vascular plants and macroalgae, Mar. Ecol. Prog. Ser. 72:131–143.

    Google Scholar 

  • Burkholder, P. R., and Bornside, G. H., 1957, Decomposition of marsh grass by aerobic marine bacteria, Bull. Torrey Bot. Club 84:366–383.

    Google Scholar 

  • Buth, G. J. C., and Voesenek, L. A. C. J., 1987, Decomposition of standing and fallen litter of halophytes in a Dutch salt-marsh, in: Vegetation between Land and Sea (A. H. L. Huiskes, C. W. P. M. Blom, and J. Rozema, eds.), Junk, The Hague, pp. 146–162.

    Google Scholar 

  • Buth, G. J. C., and Voesenek, L. A. C. J., 1988, Respiration of standing and fallen plant litter in a Dutch salt-marsh, in: Vegetation Structure in Relation to Carbon and Nutrient Economy (J. T. A. Verhoeven, G. W. Heil, and M. J. A. Werger, eds.), SPB, The Hague, pp. 51–60.

    Google Scholar 

  • Carroll, G. C, 1992, Fungal mutualism, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. 327–354.

    Google Scholar 

  • Carroll, G. C. ,and Wicklow, D. T. (eds.), 1992, The Fungal Community: Its Organization and Role in the Ecosystem ,2nd ed., Dekker, New York.

    Google Scholar 

  • Chalmers, A. G., Wiegert, R., and Wolf, P., 1985, Carbon balance in a salt-marsh: Interactions of diffusive export, tidal deposition and rainfall-caused erosion, Estuarine Coastal Shelf Sci. 21:757–771.

    CAS  Google Scholar 

  • Chauvet, E., 1988, Influence of the environment on willow leaf litter decomposition in the alluvial corridor of the Garonne River, Arch. Hydrobiol. 112:371–386.

    Google Scholar 

  • Christian, R. R., 1984, A life-table approach to decomposition studies, Ecology 65:1693–1697.

    Google Scholar 

  • Christian, R. R., Bryant, W. L., and Brinson, M. M., 1990, Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod, Mar. Ecol. Prog. Ser. 68:137–145.

    Google Scholar 

  • Cifuentes, L. A., 1991, Spatial and temporal variations in terrestrially derived organic matter from sediments of the Delaware Estuary, Estuaries 14:414–429.

    CAS  Google Scholar 

  • Clipson, N. J. W., and Jennings, D. H., 1992, Dendryphiella salina and Debaryomyces hansenii: Models for ecophysical adaptation to salinity by fungi that grow in the sea, Can. J. Bot. 70:2097–2105.

    Google Scholar 

  • Coleman, D. C., Ingham, E. R., Hunt, H. W., Elliot, E. T., Reid, C. P. P., and Moore, J. C., 1990, Seasonal and faunal effects on decomposition in semiarid prairie, meadow and lodgepole pine forest, Pedobiologia 34:207–219.

    Google Scholar 

  • Constable, J. V. H., Grace, J. B., and Longstreth, D. J., 1992, High carbon dioxide concentrations in aerenchyma of Typha latifolia, Am. J. Bot. 79:415–418.

    Google Scholar 

  • Cooke, R. C., and Rayner, A. D. M., 1984, Ecology of Saprotrophic Fungi ,Longman, London.

    Google Scholar 

  • Couch, C. A., 1989, Carbon and nitrogen stable isotopes of meiobenthos and their food resources, Estuarine Coastal Shelf Sci. 28:433–441.

    Google Scholar 

  • Covi, M. P., 1992, Intertidal Distribution and Population Dynamics of the Salt Marsh Amphipod Uhlorchestia spartinophila at Sapelo Island, GA ,Master’s thesis, University of Georgia, Athens.

    Google Scholar 

  • Cranford, P. J., Gordon, D. C., and Jarvis, C. M., 1989, Measurement of cordgrass, Spartina alterniflora,production in a macrotidal estuary, Bay of Fundy, Estuaries 12:27–34.

    Google Scholar 

  • Cummins, K. W., Wilzbach, M. A., Gates, D. M., Perry, J. B., and Taliaferro, W. B., 1989, Shredders and riparian vegetation, BioScience 39:24–30.

    Google Scholar 

  • Daiber, F. C., 1982, Animals of the Tidal Marsh ,Van Nostrand-Reinhold, Princeton, N.J.

    Google Scholar 

  • Dame, R. F., 1989, The importance of Spartina alterniflora to Atlantic coast estuaries, Rev. Aquat. Sci. 1:639–660.

    Google Scholar 

  • Dame, R. F., and Kenny, P., 1986, Variability of Spartina alterniflora primary production in the euhaline North Inlet estuary, Mar. Ecol. Prog. Ser. 32:71–80.

    Google Scholar 

  • Dame, R. F., Spurrier, J. D., Williams, T. M., Kjerfve, B., Zingmark, R. G., Wolaver, T. G., Chrzanowski, T. H., McKellar, H. N., and Vemberg, F. J., 1991, Annual material processing by a salt-marsh-estuarine basin in South Carolina, USA, Mar. Ecol. Prog. Ser. 72:153–166.

    Google Scholar 

  • Davis, S. M., 1991, Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades, Aquat. Bot. 40:203–224.

    Google Scholar 

  • Deegan, L. A., Peterson, B. J., and Portier, R., 1990, Stable isotopes and cellulase activity as evidence for detritus as a food source for juvenile Gulf menhaden, Estuaries 13:14–19.

    Google Scholar 

  • Delaune, R. D., and Lindau, C. W., 1987, δ13C signature of organic carbon in estuarine bottom sediment as an indicator of carbon export from adjacent marshes, Biogeochemistry 4:225–230.

    CAS  Google Scholar 

  • Dickinson, N. M., 1983, Decomposition of grass litter in a successional grassland, Pedobiologia 25:117–126.

    Google Scholar 

  • Eriksson, K. E., Blanchette, R. A., and Ander, P., 1990, Microbial and Enzymatic Degradation of Wood and Wood Components ,Springer, Berlin.

    Google Scholar 

  • Fallon, R. D., Newell, S. Y., and Groene, L. C., 1985, Phylloplane algae of standing dead Spartina alterniflora, Mar. Biol. 90:121–127.

    CAS  Google Scholar 

  • Fog, K., 1988, The effect of added nitrogen on the rate of decomposition of organic matter, Biol. Rev. 63:433–462.

    Google Scholar 

  • Fogel, M. L., Sprague, E. K., Gize, A. P., and Frey, R. W., 1989, Diagenesis of organic matter in Georgia salt marshes, Estuarine Coastal Shelf Sci. 28:211–230.

    CAS  Google Scholar 

  • Fry, B., Hullar, M., Peterson, B. J., Saupe, S., and Wright, R. T., 1992, DOC production in a salt-marsh estuary, Arch. Hydrobiol. Beih. Ergebn. Limnol. 37:1–8.

    CAS  Google Scholar 

  • Gallagher, J. L., Kibby, H. V., and Skirvin, K. W., 1984, Community respiration of decomposing plants in Oregon estuarine marshes, Estuarine Coastal Shelf Sci. 18:421–431.

    CAS  Google Scholar 

  • Garcia, S., and Latgé, J. P., 1987, A new colorimetric method for dosage of lignin, Biotechnol. Tech. 1:63–68.

    CAS  Google Scholar 

  • Gessner, M. O., 1992, Differences in processing dynamics of fresh and dried litter in a stream ecosystem, Freshwater Biol. 26:387–398.

    Google Scholar 

  • Gessner, R. V., 1977, Seasonal occurrence and distribution of fungi associated with Spartina alter-niflora from a Rhode Island estuary, Mycologia 69:477–491.

    Google Scholar 

  • Gessner, R. V., and Kohlmeyer, J., 1976, Geographical distribution and taxonomy of fungi from salt-marsh Spartina, Can. J. Bot. 54:2023–2037.

    Google Scholar 

  • Gosselink, J. G., and Kirby, C. J., 1974, Decomposition of salt-marsh grass, Spartina alterniflora Loisel., Limnol. Oceanogr. 19:825–832.

    Google Scholar 

  • Griffin, D. M., 1972, Ecology of Soil Fungi ,Chapman&Hall, London.

    Google Scholar 

  • Grigorova, R., and Norris, J. R. (eds.), 1990, Methods in Microbiology ,Volume 22, Academic Press, New York.

    Google Scholar 

  • Haddad, R. I., Newell, S. Y., Martens, C. S., and Fallon, R. D., 1992, Early diagenesis of lignin-associated phenolics in the salt-marsh grass Spartina alterniflora, Geochim. Cosmochim. Acta 56:3751–3764.

    Google Scholar 

  • Haines, E. G., and Hanson, R. B., 1979, Experimental degradation of detritus made from the salt-marsh plants Spartina alterniflora Loisel., Salicornia virginica L., and Juncus roemerianus Scheele, J. Exp. Mar. Biol. Ecol. 40:27–40.

    CAS  Google Scholar 

  • Hardisky, M. A., and Reimold, R. J., 1977, Salt-marsh plant geratology, Science 198:612–614.

    PubMed  CAS  Google Scholar 

  • Hawksworth, D. L., 1988, Coevolution of fungi with algae and cyanobacteria in lichen symbioses, in: Coevolution of Fungi with Plants and Animals (K. A. Pirozynski and D. L. Hawksworth, eds.), Academic Press, New York, pp. 125–148.

    Google Scholar 

  • Hawksworth, D. L., 1991, The fungal dimension of biodiversity: Magnitude, significance, and conservation, Mycol. Res. 95:641–655.

    Google Scholar 

  • Hicks, R. E., Lee, C., and Marinucci, A. C., 1991, Loss and recycling of amino acids and protein from smooth cordgrass (Spartina alterniflora) litter, Estuaries 14:430–439.

    CAS  Google Scholar 

  • Hietz, P., 1992, Decomposition and nutrient dynamics of reed (Phragmites australis (Cav.) Trin. ex Steud.) litter in Lake Neusiedel, Austria, Aquat. Bot. 43:211–230.

    CAS  Google Scholar 

  • Hill, N. M., and Patriquin, D. G., 1990, Evidence for the involvement of Azospirillum brasilense and Helicomyces roseus in the aerobic nitrogen-fixing/cellulolytic system from sugarcane litter, Soil Biol. Biochem. 22:313–319.

    CAS  Google Scholar 

  • Hill, N. M., and Patriquin, D. G., 1992, Interactions between fungi and nitrogen-fixing bacteria during decomposition, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. 783–796.

    Google Scholar 

  • Hodson, R. E., Benner, R., and Maccubbin, A. E., 1983, Transformations and fate of lignocellulosic detritus in marine environments, Biodeterioration 5:185–195.

    Google Scholar 

  • Hodson, R. E., Christian, R. R., and Maccubbin, A. E., 1984, Lignocellulose and lignin in the salt-marshn grass Spartina alterniflora: Initial concentrations and short-term, post-depositional changes in detrital matter, Mar. Biol. 81:1–7.

    CAS  Google Scholar 

  • Holland, E. A., and Coleman, D. C., 1987, Litter placement effects on microbial and organic matter dynamics in an agroecosystem, Ecology 68:425–433.

    Google Scholar 

  • Horner, J. D., Gosz, J. R., and Cates, R. G., 1988, The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems, Am. Nat. 132:869–883.

    Google Scholar 

  • Hussey, A., and Long, S. P., 1982, Seasonal changes in weight of above-ground and below-ground vegetation and dead plant material in a salt-marsh at Colne Point, Essex, J. Ecol. 70:757–771.

    Google Scholar 

  • Hutchinson, K. J., and King, K. L., 1989, Volume and activity of microorganisms in litter from native and sown temperate pasture species, Aust. J. Ecol. 14:157–167.

    Google Scholar 

  • Hwang, Y. H., and Morris, J. T., 1991, Evidence for hygrometric pressurization in the internal gas space of Spartina alterniflora, Plant Physiol. 96:166–171.

    PubMed  CAS  Google Scholar 

  • Ingham, R. E., 1992, Interactions between invertebrates and fungi: Effects on nutrient availability, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. 669–690.

    Google Scholar 

  • Johnson, T. W., 1956, Marine fungi. I. Leptosphaeria and Pleospora, Mycologia 48:495–505.

    Google Scholar 

  • Jordan, T. E., and Whigham, D. F., 1988, The importance of standing dead shoots of the narrow leaved cattail, Typha angustifolia L., Aquat. Bot. 29:319–328.

    Google Scholar 

  • Kemp, P. F., Newell, S. Y., and Hopkinson, C. S., 1990, Importance of grazing on the salt-marsh grass Spartina alterniflora to nitrogen turnover in a macrofaunal consumer, Littorina irrorata, and to decomposition of standing-dead Spartina, Mar. Biol. 104:311–319.

    CAS  Google Scholar 

  • Kohlmeyer, J., and Kohlmeyer, E., 1979, Marine Mycology: The Higher Fungi ,Academic Press, New York.

    Google Scholar 

  • Kohlmeyer, J., and Volkmann-Kohlmeyer, B., 1988, Halographis (Opegraphales), a new endolithic lichenoid from corals and snails, Can. J. Bot. 66:1138–1141.

    Google Scholar 

  • Kohlmeyer, J., and Volkmann-Kohlmeyer, B., 1991, Illustrated key to the filamentous higher marine fungi, Bot. Mar. 34:1–61.

    Google Scholar 

  • Koike, K., Shôji, S., and Yoshida, S., 1975, Seasonal and yearly change of biomass and litter, in: Ecological Studies in Japanese Grasslands (M. Numata, ed.), University of Tokyo Press, Tokyo, pp. 141–147.

    Google Scholar 

  • Končalová, H., 1990, Anatomical adaptations to waterlogging in roots of wetland graminoids: Limitations and drawbacks, Aquat. Bot. 38:127–134.

    Google Scholar 

  • Lawrey, J. D., 1984, Biology of Lichenized Fungi ,Praeger, New York.

    Google Scholar 

  • Lee, C., Howarth, R. W., and Howes, B. L., 1980, Sterols in decomposing Spartina alterniflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen, Limnol. Ocean-ogr. 25:290–303.

    CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., 1987, Relationships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microbiol. 53:1298–1303.

    PubMed  CAS  Google Scholar 

  • Lee, S. Y., 1990, Net aerial primary productivity, litter production and decomposition of the reed Phragmites communis in a nature reserve in Hong Kong: Management implications, Mar. Ecol. Prog. Ser. 66:161–173.

    Google Scholar 

  • Leuchtmann, A., 1984, Über Phaeosphaeria Miyake und andere bitunicate Ascomyceten mit mehrfach querseptierten Ascosporen, Sydowia Ann. Mycol. 37:75–198.

    Google Scholar 

  • Leuchtmann, A., and Newell, S. Y., 1991, Phaeosphaeria spartinicola ,a new species on Spartina, Mycotaxon 41:1–7.

    Google Scholar 

  • Lussenhop, J., 1992, Mechanisms of microarthropod-microbial interactions in soil, Adv. Ecol. Res. 23:1–33.

    Google Scholar 

  • McClaugherty, C., and Berg, B., 1987, Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition, Pedobiologia 30:101–112.

    CAS  Google Scholar 

  • McKee, K. L., and Seneca, E. D., 1982, The influence of morphology in determining the decomposition of two saltmarsh macrophytes, Estuaries 5:302–309.

    Google Scholar 

  • Mann, K. H., 1988, Production and use of detritus in various freshwater, estuarine, and coastal marine systems, Limnol. Oceanogr. 33:910–930.

    CAS  Google Scholar 

  • Margulis, L., Corliss, J. O., Melkonian, M., and Chapman, D. J. (eds.), 1990, Handbook of Protoctista ,Jones&Bartlett, Boston.

    Google Scholar 

  • Marinucci, A. C., Hobbie, J. E., and Helfrich, J. V. K., 1983, Effect of litter nitrogen on decomposition and microbial biomass in Spartina alterniflora, Microb. Ecol. 9:27–40.

    Google Scholar 

  • Martin, M. M., 1984, The role of ingested enzymes in the digestive processes of insects, in: Invertebrate-Microbial Interactions (J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton, eds.), Cambridge University Press, London, pp. 155–172.

    Google Scholar 

  • May, M. S., 1974, Probable agents for the formation of detritus from the halophyte, Spartina alterniflora ,in: Ecology of Halophytes (R. J. Reimold and W. H. Queen, eds.) Academic, New York, pp. 429–440.

    Google Scholar 

  • Mitsch, W. J., and Gosselink, J. G., 1986, Wetlands ,Van Nostrand-Reinhold, Princeton, N.J.

    Google Scholar 

  • Moran, M. A., and Hodson, R. E., 1989, Bacterial secondary production on vascular plant detritus: Relationships to detritus composition and degradation rate, Appl. Environ. Microbiol. 55:2178–2189.

    PubMed  CAS  Google Scholar 

  • Moran, M. A., and Hodson, R. E., 1990, Contributions of degrading Spartina alterniflora lig-nocellulose to the dissolved organic carbon pool of a salt-marsh, Mar. Ecol. Prog. Ser. 62:161–168.

    CAS  Google Scholar 

  • Morris, J. T., 1988, Pathways and controls of the carbon cycle in salt marshes, in: The Ecology and Management of Wetlands (D. D. Hook, ed.), Croom Helm, London, pp. 497–510.

    Google Scholar 

  • Morris, J. T., 1989, Modelling light distribution within the canopy of the marsh grass Spartina alterniflora as a function of canopy biomass and solar angle, Agric. For. Meteorol. 46:349–361.

    Google Scholar 

  • Morris, J. T., and Haskin, B., 1990, A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora, Ecology 71:2209–2217.

    Google Scholar 

  • Morris, J. T., and Whiting, G. J., 1986, Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses, Estuaries 9:9–19.

    CAS  Google Scholar 

  • Newell, S. Y., 1992, Estimating fungal biomass and productivity in decomposing litter, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. 521–561.

    Google Scholar 

  • Newell, S. Y., 1993, Membrane-containing fungal mass and fungal specific growth rate in natural samples, in: Handbook of Methods in Aquatic Microbial Ecology (P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole, eds.), Lewis, Boca Raton, Fla., pp. 579–586.

    Google Scholar 

  • Newell, S. Y., 1994, Methods for determining biomass and productivity of mycelial marine fungi, in: The Isolation and Study of Marine Fungi (E. B. G. Jones, ed.), Wiley, New York (in press).

    Google Scholar 

  • Newell, S. Y., and Bärlocher, F., 1993, Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails, J. Exp. Mar. Biol. Ecol. (in press).

    Google Scholar 

  • Newell, S. Y., and Fallon, R. D., 1983, Study of fungal biomass dynamics within dead leaves of cordgrass: Progress and potential, in: Proceedings of the International Symposium on Aquatic Macrophytes ,Catholic University, Nijmegen, Netherlands, pp. 150–160.

    Google Scholar 

  • Newell, S. Y., and Fallon, R. D., 1989, Litterbags, leaf tags, and decay of nonabscised intertidal leaves, Can. J. Bot. 67:2324–2327.

    Google Scholar 

  • Newell, S. Y., and Fallon, R. D., 1991, Toward a method for measuring instantaneous fungal growth rates in field samples, Ecology 72:1547–1559.

    Google Scholar 

  • Newell, S. Y., and Hicks, R. E., 1982, Direct-count estimates of fungal and bacterial biovolume in dead leaves of smooth cordgrass (Spartina alterniflora Loisel.), Estuaries 5:246–260.

    Google Scholar 

  • Newell, S. Y., and Statzell-Tallman, A., 1982, Factors for conversion of fungal biovolume values to biomass, carbon, and nitrogen: Variation with mycelial ages, growth conditions, and strains of fungi from a salt-marsh, Oikos 39:261–268.

    Google Scholar 

  • Newell, S. Y., Fell, J. W., Statzell-Tallman, A., Miller, C., and Cefalu, R., 1984, Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the sub-tropics,Aquat. Bot. 19:183–192.

    CAS  Google Scholar 

  • Newell, S. Y., Fallon, R. D., Cal Rodriguez, R. M., and Groene, L. C., 1985, Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead saltmarsh plants, Oecologia 68:73–79.

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., and Tabor, P. S., 1986, Direct microscopy of natural assemblages, in: Bacteria in Nature ,Volume 2 (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 1–48.

    Google Scholar 

  • Newell, S. Y., Arsuffi, T. L., and Fallon, R. D., 1988, Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography, Appl. Environ. Micro-biol. 54:1876–1879.

    CAS  Google Scholar 

  • Newell, S. Y., Fallon, R. D., and Miller, J. D., 1989, Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora, Mar. Biol. 101:471–481.

    Google Scholar 

  • Newell, S. Y., Arsuffi, T. L., Kemp, P. F., and Scott, L. A., 1991, Water potential of standing-dead shoots of an intertidal grass, Oecologia 85:321–326.

    Google Scholar 

  • Newell, S. Y., Hopkinson, C. S., and Scott, L. A., 1992, Patterns of nitrogenase activity (acetylene reduction) associated with standing, decaying shoots of Spartina alterniflora, Estuarine Coastal Shelf Sci. 35:127–140.

    CAS  Google Scholar 

  • Newell, S. Y., Porter, D., and Lingle, W. L., 1994, Lignocellulolysis by ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass), Microsc. Res. Techn. (in press).

    Google Scholar 

  • Norris, J. R., Read, D. J., and Varma, A. K. (eds.), 1992, Methods in Microbiology ,Volume 24, Techniques for the Study of Mycorrhiza ,Academic Press, New York.

    Google Scholar 

  • Odum, E. P., and Smalley, A. E., 1959, Comparison of population energy flow of a herbivorous and a deposit-feeding invertebrate in a salt-marsh ecosystem, Proc. Natl. Acad. Sci. USA 45:617–622.

    PubMed  CAS  Google Scholar 

  • Odum, W. E., Kirk, P. W., and Zieman, J. C., 1979, Non-protein nitrogen compounds associated with particles of vascular plant detritus. Oikos 32:363–367.

    CAS  Google Scholar 

  • Paerl, H. W., Rudek, J., and Mallin, M. A., 1990, Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: Nutritional and trophic implications, Mar. Biol. 107:247–254.

    Google Scholar 

  • Park, D., 1974, On the use of the litterbag method for studying degradation in aquatic habitats, Int. Biodeterior. Bull. 10:45–48.

    Google Scholar 

  • Parkinson, D., 1988, Linkages between resource availability, microorganisms and soil resources, Agric. Ecosyst. Environ. 24:21–32.

    Google Scholar 

  • Peterson, B. J., and Howarth, R. W., 1987, Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia, Limnol. Oceanogr. 32:1195–1213.

    CAS  Google Scholar 

  • Peveling, E., Burg, H., and Tenberge, K. B., 1992, Epiphytic algae and fungi on spruce needles, Symbiosis 12:173–187.

    Google Scholar 

  • Phillips, N. W., 1979, The relative importance of bacterial and fungal biomass and Spartina organic matter in the nutrition of two species of salt-marsh amphipods, Biol. Bull. 157:389.

    Google Scholar 

  • Pirozynski, K. A., and Hawksworth, D. L. (eds.), 1988, Coevolution of Fungi with Plants and Animals ,Academic Press, New York.

    Google Scholar 

  • Pomeroy, L. R., and Wiegert, R. W. (eds.), 1981, The Ecology of a Salt Marsh ,Springer, Berlin.

    Google Scholar 

  • Porter, D., Newell, S. Y., and Lingle, W. L., 1989, Tunneling bacteria in decaying leaves of a seagrass, Aquat. Bot. 35:397–403.

    Google Scholar 

  • Rahouti, M., Seigle-Murandi, F., Steiman, R., and Eriksson, K. E., 1989, Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum, Appl. Environ. Microbiol. 55:2391–2398.

    PubMed  CAS  Google Scholar 

  • Raskin, I., and Kende, H., 1985, Mechanisms of aeration in rice, Science 228:327–329.

    PubMed  CAS  Google Scholar 

  • Rayner, A. D. M., 1992, Introduction, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. xvii–xxiv.

    Google Scholar 

  • Rayner, A. D. M., and Boddy, L., 1988, Fungal Decomposition of Wood ,Wiley, New York.

    Google Scholar 

  • Reice, S. R., and Stiven, A. E., 1983, Environmental patchiness, litter decomposition and associated faunal patterns in a Spartina alterniflora marsh, Estuarine Coastal Shelf Sci. 16:559–571.

    Google Scholar 

  • Reid, D. G., 1989, The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae, Philos. Trans. R. Soc. London 324:1–110.

    Google Scholar 

  • Reid, I. D., 1991, Intermediates and products of synthetic lignin (dehydrogenative polymerizate) degradation by Phlebia tremellosa, Appl. Environ. Microbiol. 57:2834–2840.

    PubMed  CAS  Google Scholar 

  • Robert, M., and Chenu, C., 1992, Interactions between soil minerals and microorganisms, Soil Biochem. 7:307–404.

    CAS  Google Scholar 

  • Roman, C. T., Able, K. W., Lazarri, M. A., and Heck, K. L., 1990, Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt-marsh: A comparative analysis, Estuarine Coastal Shelf Sci. 30:35–45.

    Google Scholar 

  • Rublee, P., Cammen, L., and Hobbie, J., 1978, Bacteria in a North Carolina salt-marsh: Standing crop and importance in the decomposition of Spartina alterniflora, Publ. Univ. N.C. Sea Grant UNC-SG-78-11.

    Google Scholar 

  • Rüttiman, C., Vicuña, R., Mozuch, M.D., and Kirk, T. K., 1991, Limited bacterial mineralization of fungal degradation intermediates from synthetic lignin, Appl. Environ. Microbiol. 57:3652–3655.

    Google Scholar 

  • Salim, K. A., Carter, P. L., Shaw, S., and Smith, C. A., 1988, Leaf abscission zones in Molinia caerulea (L.) Moench, the purple moor grass, Ann. Bot. 62:429–434.

    Google Scholar 

  • Salonius, P. O., 1983, Effects of air drying on the respiration of forest soil microbial populations, Soil Biol. Biochem. 15:199–203.

    Google Scholar 

  • Schaefer, M., 1989, Secondary production and decomposition, in: Temperate Deciduous Forests (E. Röhrig and B. Ulrich, eds.), Elsevier, Amsterdam, pp. 175–218.

    Google Scholar 

  • Schleyer, M. H., 1986, Decomposition in estuarine ecosystems, J. Limnol. Soc. S. Afr. 12:90–98.

    Google Scholar 

  • Schwinghamer, P., Kepkay, P. E., and Foda, A., 1991, Oxygen flux and community biomass structure associated with benthic photosynthesis and detritus decomposition, J. Exp. Mar. Biol. Ecol. 147:9–35.

    CAS  Google Scholar 

  • Seastedt, T. R., 1984, The role of microarthropods in decomposition and mineralization processes, Annu. Rev. Entomol. 29:25–46.

    Google Scholar 

  • Seastedt, T. R., 1985, Canopy interception of nitrogen in bulk precipitation by annually burned and unburned tallgrass prairie, Oecologia 66:88–92.

    Google Scholar 

  • Seastedt, T. R., 1988, Mass, nitrogen, and phosphorus dynamics in foliage and root detritus of tallgrass prairie, Ecology 69:59–65.

    Google Scholar 

  • Seitzinger, S. P., Gardner, W.S., and Spratt, A. K., 1991, The effect of salinity on ammonium sorption in aquatic sediments: Implications for benthic nutrient recycling, Estuaries 14:167–174.

    CAS  Google Scholar 

  • Sexton, R., and Woolhouse, H. W., 1984, Senescence and abscission, in: Advanced Plant Physiology (M. B. Wilkins, ed.), Pitman, London, pp. 469–497.

    Google Scholar 

  • Shaw, P. J. A., 1992, Fungi, fungivores, and fungal food webs, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. 295–310.

    Google Scholar 

  • Shoemaker, R. A., and Babcock, C. E., 1989, Phaeosphaeria, Can. J. Bot. 67:1500–1599.

    Google Scholar 

  • Stiven, A. E., and Hunter, J. T., 1976, Growth and mortality of Littorina irrorata Say in three North Carolina marshes, Chesapeake Sci. 17:168–176.

    Google Scholar 

  • Stowe, W. C., and Gosselink, J. G., 1985, Metabolic activity of the epiphytic community associated with Spartina alterniflora, Gulf Res. Rep. 8:21–26.

    Google Scholar 

  • Suberkropp, K., 1992a, Interactions with invertebrates, in: The Ecology of Aquatic Hyphomycetes (F. Bärlocher, ed.), Springer, Berlin, pp. 118–134.

    Google Scholar 

  • Suberkropp, K., 1992b, Aquatic hyphomycete communities, in: The Fungal Community (G. C. Carroll and D. T. Wicklow, eds.), Dekker, New York, pp. 729–747.

    Google Scholar 

  • Swift, M. J., Heal, O. W., and Anderson J. M., 1979, Decomposition in Terrestrial Ecosystems, University of California Press, Berkeley.

    Google Scholar 

  • Teal, J. M., 1962, Energy flow in a salt-marsh ecosystem of Georgia, Ecology 43:614–624.

    Google Scholar 

  • Tenore, K. R., Hanson, R. B., McClain, J., Maccubbin, A. E., and Hodson, R. E., 1984, Changes in composition and nutritional value to a benthic deposit feeder of decomposing detritus pools, Bull. Mar. Sci. 35:299–311.

    Google Scholar 

  • Torzilli, A. P., and Andrykovitch, G., 1986, Degradation of Spartina lignocellulose by individual and mixed cultures of salt-marsh fungi, Can. J. Bot. 64:2211–2215.

    CAS  Google Scholar 

  • Tsutsuki, K., and Ponnamperuma, F. N., 1987, Behavior of anaerobic decomposition products in submerged soils, Soil Sci. Plant Nutr. 33:13–33.

    CAS  Google Scholar 

  • Turner, R. E., 1993, Carbon, nitrogen, and phosphorus leaching rates from Spartina alterniflora Loisel salt marshes, Mar. Ecol. Prog. Ser. 92:135–140.

    CAS  Google Scholar 

  • Turner, R. E., and Boesch, D. F., 1988, Aquatic animal production and wetland relationships: Insights gleaned following wetland loss or gain, in: The Ecology and Management of Wetlands (D. D. Hook, ed.), Croom Helm, London, pp. 25–39.

    Google Scholar 

  • Twilley, R. R., Ejdung, G., Romare, P., and Kemp, W. M., 1986, A comparative study of decomposition,oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment, Oikos 47:190–198.

    CAS  Google Scholar 

  • Valiela, I., Teal, J. M., Allen, S.D., Van Etten, R., Goehringer, D., and Volkmann, S., 1985, Decomposition in salt-marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. J. Exp. Mar. Biol. Ecol. 89:29–54.

    CAS  Google Scholar 

  • Visser, S., 1985, Role of soil invertebrates in determining the composition of soil microbial communities,in: Ecological Interactions in Soil (D. Atkinson, D. J. Read, and M. B. Usher, eds.), Blackwell, Oxford, pp. 297–317.

    Google Scholar 

  • Vitousek, P. M., and Howarth, R. W., 1991, Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.

    Google Scholar 

  • Wagner, D. T., 1969, Ecological studies on Leptosphaeria discors ,a graminicolous fungus of salt marshes, Nova Hedwigia 18:383–396.

    Google Scholar 

  • Wijte, A. H. B. M., and Gallagher, J. L., 1991, The importance of dead and young live shoots of Spartina alterniflora (Poaceae) in a mid-latitude salt-marsh for overwintering and recoverability of underground reserves, Bot. Gaz. 152:509–513.

    Google Scholar 

  • Williams, T. M., Wolaver, T. G., Dame, R. F., and Spurrier, J. D., 1992, The Bly Creek ecosystem study-Organic carbon transport within a euhaline salt-marsh basin, North Inlet, South Carolina,J. Exp. Mar. Biol. Ecol. 163:125–139.

    Google Scholar 

  • Wilson, J. O., Buchsbaum, R., Valiela, I., and Swain, T., 1986, Decomposition in salt-marsh ecosystems: Phenolic dynamics during decay of litter of Spartina alterniflora, Mar. Ecol. Prog. Ser. 29:177–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newell, S.Y. (1993). Decomposition of Shoots of a Salt-Marsh Grass. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2858-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2858-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6238-8

  • Online ISBN: 978-1-4615-2858-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics