Growth in Systems with Quenched Disorder

  • Mark O. Robbins
  • Marek Cieplak
  • Hong Ji
  • Belita Koiller
  • Nicos Martys
Part of the NATO ASI Series book series (NSSB, volume 304)


In this paper we consider the effect of quenched disorder on growth. Two specific examples are considered to illustrate the general nature of the changes induced by disorder: magnetic domain growth1–3 and immiscible fluid invasion.4–8 In each case there are two domains which have different spin orientations or fluid composition. An applied force, magnetic field or pressure, favors growth of one domain.


Fractal Dimension Exchange Coupling Critical Force Domain Growth Effective Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ji and Mark O. Robbins, Phys. Rev. A44, 2538 (1991).Google Scholar
  2. 2.
    B. Koiller, H. Ji and M. O. Robbins, submitted to Phys. Rev. B.Google Scholar
  3. 3.
    H. Ji and Mark O. Robbins, to be published.Google Scholar
  4. 4.
    M. Cieplak and M. O. Robbins, Phys. Rev. Lett. 60, 2042 (1988); Phys. Rev. B41, 11508 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    N. Martys, M. Cieplak, and M. O. Robbins, Phys. Rev. Lett. 66, 1058 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Martys, M. O. Robbins and M. Cieplak, Phys. Rev. B44, 12294 (1991).Google Scholar
  7. 7.
    N. Martys, PhD. thesis, (1990); N. Martys, M. O. Robbins and M. Cieplak, in Scaling in Disordered Materials: Fractal Structure and Dynamics, edited by J. P. Stokes, M. O. Robbins and T. A. Witten (Materials Research Society, Pittsburgh, 1990), p. 67.Google Scholar
  8. 8.
    B. Koiller, H. Ji and M. O. Robbins, Phys. Rev. B, in press.Google Scholar
  9. 9.
    D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).Google Scholar
  10. 10.
    J. Feder, Fractals (Plenum Press, New York, 1988).Google Scholar
  11. 11.
    R. Lenormand and S. Bories, C. R. Acad. Sci. Ser. B291, 279 (1980). R. Chandler, J. Koplik, K. Lerman and J. F. Willemsen, J. Fluid Mech. 119, 249 (1982).Google Scholar
  12. 12.
    M. M. Dias and A. C. Payatakes, J. Fluid Mech. 164, 305 (1986).CrossRefGoogle Scholar
  13. 13.
    R. Lenormand, J. Phys.: Condens. Matter 2, SA79 (1990). R. Lenormand and C. Zarcone, Phys. Rev. Lett. 54, 2226 (1985).CrossRefGoogle Scholar
  14. 14.
    J. P. Stokes, D. A. Weitz, J.P. Gollub, A. Dougherty, M.O. Robbins, P.M. Chaikin, and H.M. Lindsay, Phys. Rev. Lett. 57, 1718 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    A.P. Kushnick, J.P. Stokes and M.O. Robbins, Fractal Aspects of Materials: Disordered Systems, (Materials Research Society, Pittsburgh, 1988) Ed. by D.A. Weitz, L.M. Sander and B.B. Mandelbrot, p. 87, and to be published.Google Scholar
  16. 16.
    J.P. Stokes, A.P. Kushnick and M.O. Robbins, Phys. Rev. Lett. 60, 1386 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    M.A. Rubio, C. Edwards, A. Dougherty and J.P. Gollub, Phys. Rev. Lett. 63, 1685 (1989); ibid. 65, 1339 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    V.K. Horvath, F. Family, and T. Vicsek, Phys. Rev. Lett. 65, 1388 (1990); J. Phys. A24, L25 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    P.Z. Wong, private communication.Google Scholar
  20. 20.
    D. Wilkenson and J.F. Willemsen, J. Phys. A16, 3365 (1983).Google Scholar
  21. 21.
    See for example, T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
  22. 22.
    The exponent τ′ is related to, but different from, the exponent τ describing the cluster distribution in ordinary percolation.Google Scholar
  23. 23.
    G. Grinstein and S. Ma, Phys. Rev. B28, 2588 (1983).Google Scholar
  24. 24.
    M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett. 64, 543 (1990).CrossRefGoogle Scholar
  25. 25.
    E. Medina, T. Hwa, M. Kardar and Y.-C. Zhang, Phys. Rev. A39, 3053 (1989). J. Amar and F. Family, J. Phys. A24, L79 (1991).Google Scholar
  26. 26.
    B. Koiller, N. Martys and M.O. Robbins, to be published.Google Scholar
  27. 27.
    D.A. Kessler, H. Levine and Y. Tu, Phys. Rev. A43, 4551 (1991).Google Scholar
  28. 28.
    L.H. Tang and H. Leschhom, to be published.Google Scholar
  29. 29.
    A.-L. Barabási, S.V. Buldyrev, F. Caserta, S. Havlin, H.E. Stanley and T. Vicsek, to be published.Google Scholar
  30. 30.
    J. Chalupa, P.L. Leath and G.R. Reich, J. Phys. C. 12, L31 (1981): P.M. Kogut and P.L. Leath, J. Phys. C 14, 3187 (1981); J. Adler and J. Aharony, J. Phys. A 21, 1387 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Mark O. Robbins
    • 1
  • Marek Cieplak
    • 1
  • Hong Ji
    • 1
  • Belita Koiller
    • 1
  • Nicos Martys
    • 1
  1. 1.Department of Physics and AstronomyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations