Advertisement

Anomalous Surface Roughening: Experiment and Models

  • S. Havlin
  • A.-L. Barabási
  • S. V. Buldyrev
  • C. K. Peng
  • M. Schwartz
  • H. E. Stanley
  • T. Vicsek
Part of the NATO ASI Series book series (NSSB, volume 304)

Abstract

We review briefly recent studies based on power law distribution of noise to explain the anomalous surface roughening found in several experiments. We study the probability distribution of the height fluctuations in d = 1 + 1 by mapping the surface to a Lévy walk. We also review numerical studies for the effect of long-range correlated noise on (i) the KPZ equation and the related directed-polymer (DP) problem and (H) the ballistic deposition (BD) model. We describe measurements of the interface formed when a wet front propagates in paper with anomalous roughening exponent α = 0.63 ± 0.04. We suggest a model based on propagation and pinning of a self-afflne interface in the presence of quenched disorder, with erosion of overhangs. By mapping our model to directed percolation, we find α ≃ 0.63.

Keywords

Correlate Noise Directed Percolation Directed Polymer Roughness Exponent Invasion Percolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Family and T. Vicsek (eds.), Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).Google Scholar
  2. 2.
    For a recent review, see J. Krug and H. Spohn, in Solids Far from Equilibrium: Growth, Morpholgy and Defects, edited by C. Godréche (Cambridge Univ. Press, Cambridge, England, 1991).Google Scholar
  3. 3.
    T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
  4. 4.
    A. Bunde and S. Havlin (eds.), Fractals and Disordered Systems (Springer-Verlag, Berlin, 1991).Google Scholar
  5. 5.
    M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986); E. Medina, T. Hwa, M. Kardar artd Y.-C. Zhang, Phys. Rev. A 39, 3053 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).CrossRefGoogle Scholar
  7. 7.
    P. Meakin, P. Ramanlal, L.M. Sander, and R.C. Ball, Phys. Rev. A 34, 5091 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Krug, Phys. Rev. A 36, 5465 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    M.A. Rubio, C.A. Edwards, A. Dougherty, and J.P. Gollub, Phys. Rev. Lett. 63, 1685 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    V.K. Horváth, F. Family, and T. Vicsek, J. Phys. A 24, L25 (1991).CrossRefGoogle Scholar
  11. 11.
    T. Vicsek, M. Cserzö, and V.K. Horváth, Physica A 167, 315 (1990).CrossRefGoogle Scholar
  12. 12.
    Y.-C. Zhang, J. de Physique 51, 2113 (1990).CrossRefGoogle Scholar
  13. 13.
    J. Amar and F. Family, J. Phys. A 24, L79 (1991).CrossRefGoogle Scholar
  14. 14.
    S.V. Buldyrev, S. Havlin, J. Kertész, H.E. Stanley, and T. Vicsek, Phys. Rev. A 43, 7113 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    Y.-C. Zhang, Physica 170, 1 (1990); J. Krug, J. Physique I, 1, 9 (1991).CrossRefGoogle Scholar
  16. 16.
    S. Havlin, S.V. Buldyrev, H.E. Stanley and G.H. Weiss, J. Phys. A 24, L925 (1991).CrossRefGoogle Scholar
  17. 17.
    Since for μ > 1, 〈ℓ〉 is finite, the Levy walk model will have the same distribution as the Levy flight where the walker makes ℓ steps in one unit of time.Google Scholar
  18. 18.
    G. Zumofen, J. Klafter, and A. Blumen, Chemical Physics 146, 433 (1990); M. Araujo, S. Havlin, G.H. Weiss and H.E. Stanley, Phys. Rev. A 43, 5207 (1991).CrossRefGoogle Scholar
  19. 19.
    V.K. Horváth, F. Family and T. Vicsek, Phys. Rev. Lett. 67, 3207 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    V. Yakhot and S.A. Orszag, Phys. Rev. Lett. 57, 1722 (1986); V. Yakhot and S.A. Orszag, Phys. Rev. Lett. 60, 1840 (1988); and references therein.PubMedCrossRefGoogle Scholar
  21. 21.
    M. Kardar and Y.-C. Zhang, Phys. Rev. Lett 58, 2087 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    Y.-C. Zhang, Phys. Rev. B 42, 4897 (1990).CrossRefGoogle Scholar
  23. 23.
    H.G.E. Hentschel and F. Family, Phys. Rev. Lett. 66, 1982 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Meakin and R. Jullien, Europhys. Lett. 9, 71 (1989); P. Meakin and R. JuUien, Phys. Rev. A 41, 983 (1990); A. Margolina and H.E. Warriner, J. Stat. Phys. 60, 809 (1990).CrossRefGoogle Scholar
  25. 25.
    C.K. Peng, S. Havlin, M. Schwartz, and H.E. Stanley, Phys. Rev. A 44 2239 (1991); J.G. Amar, P.-M. Lam, and F. Family, Phys. Rev. A 43, 4548 (1991) consider one of the models we treated (BD) and find agreement with (14a) over the range 0 ≤ p ≤ 0.43.Google Scholar
  26. 26.
    S. Havlin, R. Selinger, M. Schwartz, H.E. Stanley, and A. Bunde, Phys. Rev. Lett. 61, 1438 (1988); C.K. Peng, S. Havlin, M. Schwartz, H.E. Stanley, and G.H. Weiss, poster presentation at Cargèse NATO ASI (July 1990).PubMedCrossRefGoogle Scholar
  27. 27.
    S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Sect. A 381, 17 (1982).CrossRefGoogle Scholar
  28. 28.
    A.-L. Barabási, S. Buldyrev, F. Caserta, S. Havlin, H.E. Stanley, and T. Vicsek (preprint); see also L.H. Tang and H. Leschhorn (preprint).Google Scholar
  29. 29.
    The rule corresponding to the erosion of cells is introduced to take into account that under the influence of the locally advanced interface the pinned parts of the interface are likely to be ‘released’ and consequently catch up in a short time. See the discussion in M. Cieplak and M.O. Robbins, Phys. Rev. B41, 11508 (1990) and M.O. Robbins (private communication).Google Scholar
  30. 30.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd edition (Taylor & Francis, London, 1992).Google Scholar
  31. 31.
    W. Kinzel, in Percolation Structures and Processes, edited by G. Deutscher, R. Zallen, and J. Adler (A. Hilger, Bristol, 1983).Google Scholar
  32. 32.
    B. Hede, J. Kertész, and T. Vicsek, J. Stat. Phys. 64, 829 (1991).CrossRefGoogle Scholar
  33. 33.
    The general scaling formalism extended to the case when there is a diverging length in the system (ξ∥) as the critical point p c is approached has been proposed in J. Kertész and D.E. Wolf, Phys. Rev. Lett. 62, 2517 (1989).CrossRefGoogle Scholar
  34. 34.
    B.M. Forrest and L.-H. Tang, Phys. Rev. Lett. 64, 1405 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • S. Havlin
    • 1
    • 2
  • A.-L. Barabási
    • 1
  • S. V. Buldyrev
    • 1
  • C. K. Peng
    • 1
  • M. Schwartz
    • 1
    • 3
  • H. E. Stanley
    • 1
  • T. Vicsek
    • 4
  1. 1.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA
  2. 2.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael
  3. 3.Department of Physics and AstronomyTel-Aviv UniversityRamat-AvivTel-AvivIsrael
  4. 4.Department of Atomic PhysicsEötvös UniversityBudapestHungary

Personalised recommendations