Synthesis and Reaction Chemistry of Layered Oxides with Perovskite Related Structures

  • Allan J. Jacobson
Part of the NATO ASI Series book series (NSSB, volume 305)

Abstract

A large class of perovskite related oxides with layer structures can be represented by the general composition Mm[An-1BnO3n+1], where the contents of the brackets corresponds to the composition of the perovskite related layers and Mm represents either interlayer cations or a second type of metal oxide layer which regularly alternates with the perovskite layers. Compounds where B is niobium or a mixture of titanium and niobium, M is an alkali metal cation and m = 1, 2 can be synthesized for 2≤n≤7. The layer structures show both ion exchange and acid base intercalation chemistry which is independent of the layer thickness up to the maximum observed value of 22Å.

Keywords

Clay Titanium Surfactant Zirconium Hydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rebbah, G. Desgardin, and B. Raveau, Mater Res Bull. 14:1125 (1979).CrossRefGoogle Scholar
  2. 2.
    H. Rebbah, M. Hervieu, and B. Raveau, Mater Res Bull. 16:149 (1981).CrossRefGoogle Scholar
  3. 3.
    R. Marchand, L. Brohan, R. M’Bedi, and M. Tournoux, Rev. Chim. Miner. 21:476 (1984).Google Scholar
  4. 4.
    H. Izawa, S. Kikkawa, and M. Koizumi, J. Phys. Chem. 86:5023 (1982).CrossRefGoogle Scholar
  5. 5.
    T. P. Feist, S. J. Mocarski, P. K. Davies, A. J. Jacobson, and J. T. Lewandowski, Solid State Ionics 28–30:1338–1343 (1987).Google Scholar
  6. 6.
    R. Hoppe and W. Dahne, Naturwiss. 49:254 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    M. Poulain, M. Poulain, and J. Lucas, J. Solid State Chem. 8:132 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    A. Rabenau and P. Eckerlin, Acta Cryst. 11:304 (1958).CrossRefGoogle Scholar
  9. 9.
    S. N. Ruddlesden and P. Popper, Acta Cryst. 10:538 (1957).CrossRefGoogle Scholar
  10. 10.
    S. N. Ruddlesden and P. Popper, Acta Cryst. 11:54 (1958).CrossRefGoogle Scholar
  11. 11.
    C. Brisi, M. Vallino, and F. Abbattista, J. Less Common Metals, 79:215 (1981).CrossRefGoogle Scholar
  12. 12.
    N. Nguyen, L. Er-Rakho, C. Michel, J. Choisnet and B. Raveau, Mater. Res. Bull. 15:891 (1980).CrossRefGoogle Scholar
  13. 13.
    Y.S. Zhen and J. B. Goodenough, Mater. Res. Bull. 25:785 (1990).CrossRefGoogle Scholar
  14. 14.
    B. Aurivillius Arkiv. Kemi 5:39 (1952).Google Scholar
  15. 15.
    B. Aurivillius Arkiv. Kemi 1:463 (1949).Google Scholar
  16. 16.
    C. W. Chu, J. Bechtold, L. Gao, P. H. Hor, Z. J. Huang, R. L. Meng, Y.Y. Sun, Y. Q. Wang, and Y.Y. Xue, Phys Rev. Lett. 60:941 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    B. Aurivillius Arkiv. Kemi 1:499 (1949).Google Scholar
  18. 18.
    B. Aurivillius Arkiv. Kemi 2:519 (1950).Google Scholar
  19. 19.
    E. C. Subbarao, J. Amer. Ceram. Soc. 45:166 (1962).CrossRefGoogle Scholar
  20. 20.
    J. D. Jorgensen, B. Dabrowski, S. Pei, D. R. Richards, and D.G. Hinks, Phys. Rev.B 40:2187 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    X.-D Xiang, S. McKernan, W.A. Vareka, A. Zettl, J. L. Corkill, T. W. Barbee III, and M.L. Cohen Nature, 348:145 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    M. Dion, M. Ganne, and M. Tournoux, Mater. Res. Bull. 16:1429–1435 (1981).CrossRefGoogle Scholar
  23. 23.
    M. Dion, M. Ganne, and M. Tournoux, Rev. Chim. Minerale 21:92–103 (1984).Google Scholar
  24. 24.
    A. J. Jacobson, J. W. Johnson, and J. T. Lewandowski, Inorg. Chem. 24:3727–3729 (1985).CrossRefGoogle Scholar
  25. 25.
    A. Olsen, and R. S. Roth, J. Solid State Chem. 60:347–357 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    M. Dion, M. Ganne, and M. Tournoux, Rev. Chim. Minerale 23:61–69 (1986).Google Scholar
  27. 27.
    J. Gopalakrishnan, V. Bhat, and B. Raveau, Mater. Res. Bull. 22:413–417 (1987).CrossRefGoogle Scholar
  28. 28.
    M. Gondrand and J.-C. Joubert, Rev. Chim Minerale 24:33–41 (1987).Google Scholar
  29. 29.
    J. Gopalakrishnan, and V. Bhat, Inorg. Chem. 26:4299–4301 (1987).CrossRefGoogle Scholar
  30. 30.
    M. A. Subramanian, J. Gopalakrishnan, and A. W. Sleight, Mater. Res. Bull. 23:837–842 (1988).CrossRefGoogle Scholar
  31. 31.
    R. A. Mohan Ram, and A. Clearfield, J. Solid State Chem. 94:45–51 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    M. Sato, J. Abo, T. Jin, and M. Ohta, Solid State Ionics 51:85–89 (1992).CrossRefGoogle Scholar
  33. 33.
    D. Kolar, S. Gaberscek, B. Volavsek, H. S. Parker, and R. S. Roth, J. Solid State Chem. 38:158 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    A. J. Jacobson, M. M. J. Treacy, S. B. Rice, and J. T. Lewandowski, unpublished results.Google Scholar
  35. 35.
    J. Gopalakrishnan, A. Ramanan, C. N. R. Rao, D. A. Jefferson, and D. J. Smith, J. Solid State Chem. 55:101 (1984).ADSCrossRefGoogle Scholar
  36. 36.
    J-M. Jehng and I. E. Wachs, Chem Mater 3:100 (1991).CrossRefGoogle Scholar
  37. 37.
    M. Puri, R. S. Czernuszewicz, and A. J. Jacobson, to be published.Google Scholar
  38. 38.
    M. Nanot, F. Queyroux, J.-C. Gilles, A. Carpy, and J. Galy, J. Solid State Chem. 22:45 (1987).Google Scholar
  39. 39.
    A. J. Jacobson, J. T. Lewandowski, and J. W. Johnson, Mater Res. Bull. 25:679 (1990).CrossRefGoogle Scholar
  40. 40.
    R. Jones and W. R. McKinnon, Solid State Ionics 45:173 (1991).CrossRefGoogle Scholar
  41. 41.
    A. J. Jacobson, J. T. Lewandowski, and J. W. Johnson, J. Less Common Metals, 116:137 (1986).CrossRefGoogle Scholar
  42. 42.
    H. Rebbah, J. Pannetier, and B. Raveau, J. Solid. State Chem., 41:57 (1982).ADSCrossRefGoogle Scholar
  43. 43.
    A. J. Jacobson, J. W. Johnson, and J. T. Lewandowski, Mater. Res. Bull., 22:45 (1987).CrossRefGoogle Scholar
  44. 44.
    P. Clement and R. Marchand, CR Acad SciParis Ser. II 296:1161 (1983).Google Scholar
  45. 45.
    H. Rebbah, M.-M. Borel, M. Bernard, and B. Raveau, Rev. Chim. Miner. 18:109 (1981).Google Scholar
  46. 46.
    A. Clearfield in “Inorganic Ion Exchange Materials,” A. Clearfield, ed. CRC Press, Inc., Boca Raton, Florida, (1982).Google Scholar
  47. 47.
    R.E. Grim, “Clay Mineralogy,” 2nd ed.; McGraw-Hill: New York, (1968).Google Scholar
  48. 48.
    A. Lerf and R. Schollhorn, Inorg. Chem. 16:2950–2956 (1977).CrossRefGoogle Scholar
  49. 49.
    D. W. Murphy and G.W. Hull, Jr., J. Chem. Phys., 62:973–978 (1975).ADSCrossRefGoogle Scholar
  50. 50.
    L.F. Nazar and A.J. Jacobson, J. Chem. Soc, Chem. Commun., 570–571 (1986).Google Scholar
  51. 51.
    A. Weiss and E. Sick, Z. Nuturforsch., 33b:1087–1090 (1978).Google Scholar
  52. 52.
    R. Clement, O. Garnier, and J. Jegoudez, Inorg. Chem., 25:1404–1409 (1986).CrossRefGoogle Scholar
  53. 53.
    W. M. R. Divaigalpitiya, R. F. Frindt, and S. R. Morrison, Science, 246:369–371 (1989).ADSCrossRefGoogle Scholar
  54. 54.
    P. Joensen, R.F. Frindt, and S. R. Morrison, Mater. Res. Bull., 21:457–461 (1986).CrossRefGoogle Scholar
  55. 55.
    D. G. H. Ballard, and G. R. Rideal, J. Mater. Sci., 18:545–561 (1983).ADSCrossRefGoogle Scholar
  56. 56.
    G. Alberti, M. Casciola, and U. Costantino, J. Colloid Interfacial Sci., 107:256–263 (1985).CrossRefGoogle Scholar
  57. 57.
    H. Rebbah, M. M. Borel, and B. Raveau, Mater. Res. Bull. 15:317–321 (1980).CrossRefGoogle Scholar
  58. 58.
    C. Y. Ortiz-Avila and A. Clearfield, Inorg. Chem. 24:1733–1778 (1985).Google Scholar
  59. 59.
    M. M. J. Treacy, S. B. Rice, A.J. Jacobson, and J.T. Lewandowski, Chem. Mater., 2:279 (1990).CrossRefGoogle Scholar
  60. 60.
    “Pillared Clays in Catalysis Today”, R. Burch, Ed. Elsevier, Amsterdam, 2:185 (1988).Google Scholar
  61. 61.
    S. Hardin, D. Hay, M. Millikan, J. V. Sanders and T. W. Turney, Chem. Mater., 3:977 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Allan J. Jacobson
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations