Advertisement

Electron Correlations and Electron-Lattice Coupling in C60

  • Gernot Stollhoff
  • Hubert Scherrer
Part of the NATO ASI Series book series (NSSB, volume 305)

Abstract

Recently it was found that C60-compounds become superconducting at temperatures which are high in comparison to other carbon compounds like doped graphite.1 The dependence of the superconducting transition temperature on lattice parameters and its insensitivity to different masses of the metal ions within the compound2,3 suggest that the origin of superconductivity must be connected with either anomalous electronic interactions or with a particular detail of electron-lattice coupling within the C60 molecules that sizeably differs from the one in graphite compounds.

Keywords

Ground State Energy Local Density Approximation Neutral Molecule Correlation Strength Finite Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Hebard et al., Nature 350, 600 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    G. Sparn et al., Science 252, 1829 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    O. Zhou et al, unpublished.Google Scholar
  4. 4.
    G. Stollhoffand P. Fulde, J. Chem. Phys., 73(9), 4548 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    G. Stollhoffand M. Häser, Phys. Rev. B, in print.Google Scholar
  6. 6.
    G. Stollhoff, A. B. Pisanty and M. Causa, unpublished.Google Scholar
  7. 7.
    G. Stollhoff, Phys. Rev. B44, 10998 (1991).ADSGoogle Scholar
  8. 8.
    P. Siegbahn and B. Roos, Theoret. Chim. Acta 17, 209 (1970).CrossRefGoogle Scholar
  9. 9.
    R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Letters 162, 165 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    M. Häser, J. Almlöf and G. E. Scuseria, Chem. Phys. Letters 181, 497 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    R. Jastrow, Phys. Rev, 98, 1479 (1955).ADSCrossRefMATHGoogle Scholar
  12. 12.
    G. Stollhoff and P. Vasilopoulos, J. Chem. Phys. 84, 2744 (1986).ADSCrossRefGoogle Scholar
  13. G.
    Stollhoff and P. Vasilopoulos, J. Chem. Phys 85, 3138 (1986).ADSCrossRefGoogle Scholar
  14. 13.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).ADSCrossRefGoogle Scholar
  15. 14.
    G. König and G. Stollhoff, Phys. Rev. Lett. 65, 1239 (1990).ADSCrossRefGoogle Scholar
  16. 15.
    G. W. Hayden and E. J. Mele, Phys. Rev. B36, 5010 (1987).ADSGoogle Scholar
  17. 16.
    H. Scherrer and G. Stollhoff, unpublished.Google Scholar
  18. 17.
    S. Satpathy, V. P. Antropov, O. K. Andersen, O. Jepsen, O. Gunnarsson and A. I. Liechtenstein, Phys. Rev. B in print.Google Scholar
  19. 18.
    W. I. F. David et al., Nature 353, 147 (1991).ADSCrossRefGoogle Scholar
  20. 19.
    K. Hedberg et al., Science, 254, 410 (1991).ADSCrossRefGoogle Scholar
  21. 20.
    J. E. Fischer, private communication.Google Scholar
  22. 21.
    P. Baltzer, W. J. Griffiths, A. J. Maxwell, P. A. Brühwiler, L. Karlsson and N. Martensson, unpublished.Google Scholar
  23. 22.
    J. Fink et al., unpublished.Google Scholar
  24. 23.
    M. Schlüter, M. Lanoo, M. Needels, G. A. Baraff and D. Tomanek, Phys. Rev. Lett. 68, 526 (1992).ADSCrossRefGoogle Scholar
  25. 24.
    C. M. Varma, J. Zaanen and K. Raghavachari, Science 254, 989 (1991).ADSCrossRefGoogle Scholar
  26. 25.
    I. I. Mazin, S. N. Rashkeev, V. P. Antropov, O. K. Andersen, A. I. Liechtenstein and O. Jepsen, Phys. Rev. B, rap. commun. 45, 5114 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Gernot Stollhoff
    • 1
  • Hubert Scherrer
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Federal Republic of Germany

Personalised recommendations