Advertisement

Ultrasonic Characterization of Fiber-Matrix Interphasial Properties in Ceramic Matrix Composites

  • Y. C. Chu
  • S. I. Rokhlin

Abstract

The major role of the fiber-matrix interphase in ceramic matrix composites (CMC) is to increase the composite fracture resistance; thus the properties of these materials are dominated by the interphase. To achieve this, the interphase is designed to provide friction sliding contact between fiber and matrix, which prevents fracture of fibers due to matrix cracking [1,2]. Due to the relatively low stiffness of the fiber-matrix interphase compared to fiber and matrix, the interphase also has a dominant effect on the transverse and shear stiffnesses of CMC materials [3]. Therefore, to obtain optimal performance in CMC materials quantitative characterization of the fiber-matrix interphase is necessary.

Keywords

Elastic Constant Ceramic Matrix Composite Imperfect Interface Carbon Core Micromechanical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Evans and D. B. Marshall, Mat. Res. Soc. Symp. Proc. 120, 213 (1988).CrossRefGoogle Scholar
  2. 2.
    K. M. Prewo, Mat. Res. Soc. Symp. Proc. 120, 145 (1988).CrossRefGoogle Scholar
  3. 3.
    Y. C. Chu and S. I. Rokhlin, J. Acoust. Soc. Am. 92, 920 (1992).CrossRefGoogle Scholar
  4. 4.
    A. G. Evans, F. W. Zok, and J. Davis, Composites Science and Technology 42, 3 (1991).CrossRefGoogle Scholar
  5. 5.
    J. D. Achenbach and H. Zhu, J. Appl. Mech. 57, 956 (1990).CrossRefGoogle Scholar
  6. 6.
    M. Gosz, B. Moran, and J. D. Achenbach Int. J. Solids Structures 27, 1757 (1991).CrossRefGoogle Scholar
  7. 7.
    Z. Hashin, Mechanics of Materials 8, 333 (1990).CrossRefGoogle Scholar
  8. 8.
    Y. P. Qiu and G. J. Weng, J. Appl. Mech. 58, 388 (1991).CrossRefMATHGoogle Scholar
  9. 9.
    M. Hefetz and S. I. Rokhlin, J. Am. Ceram. Soc. 75, 1839 (1992).CrossRefGoogle Scholar
  10. 10.
    S. I. Rokhlin and W. Wang, J. Acoust. Soc. Am. 91, 3303 (1992).CrossRefGoogle Scholar
  11. 11.
    R. W. Hill, Proc. Phys. Soc. London A65, 349 (1952).Google Scholar
  12. 13.
    Z. Hashin and B. W. Rosen, J. Appl. Mech. 31, 223 (1964).CrossRefGoogle Scholar
  13. 14.
    R. M. Christensen, Mechanics of Composite Materials ( Krieger Publishing, Malabar, FL, 1991 ).Google Scholar
  14. 15.
    M. Gosz and J. D. Achenbach, private communication.Google Scholar
  15. 16.
    J. M. Baik and R. B. Thompson, J. Nondestr. Eval. 4, 177 (1984).CrossRefGoogle Scholar
  16. 17.
    R. T. Bhatt, NASA TM-102360 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1993

Authors and Affiliations

  • Y. C. Chu
    • 1
  • S. I. Rokhlin
    • 1
  1. 1.Department of Welding EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations