Advanced Aerospace Materials: Titanium Aluminide Intermetallic Compounds and Metal Matrix Composites

  • F. H. Froes
  • C. Suryanarayana
  • I. S. Polkin


The aerospace systems of the twenty-first century will have mission requirements considerable beyond present day vehicles; including operation in a cost-effective manner. This in turn will require materials with enhanced mechanical property characteristics compared to current state-of-the-art materials. The mission scenarios of the future air and space systems will be briefly reviewed followed by a general consideration of the materials of construction. Two specific types of advanced materials will then be discussed - intermetallic compounds and metal matrix composites. It will be pointed out that while both generic types of materials offer increased strength, stiffness and temperature capability, both also suffer from low ambient temperature “forgiveness” (ductility, fracture toughness, fatigue crack growth rate, etc.) and high cost. The advances which have been made in resolving these concerns, while maintaining other characteristics at attractive levels, will be discussed. A detailed presentation of monolithic and composite titanium aluminides (Ti Al, where x = 1 or 3) will be made.


Metal Matrix Composite Fatigue Crack Growth Rate Titanium Aluminides Continuous Fiber High Temperature Order Intermetallic Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Congress of the US, Office of Technology Assessment, Advanced Materials by Design, (June 1988).Google Scholar
  2. 2.
    A.R.C. Westwood, Met Trans. B 19B, 155 (1988).CrossRefGoogle Scholar
  3. 3.
    F.H. Froes, in: P/M in Aerospace and Defense, edited by F.H. Froes, (MPIF, Princeton, NJ, 1990), p. 23.Google Scholar
  4. 4.
    F.H. Froes, in: 1991 P/M in Aerospace and Defense Technologies, edited by F.H. Froes, (MPIF, Princeton, NJ, 1991), p. 5.Google Scholar
  5. 5.
    Scientific American, 255, No. 4, Oct. 1986.Google Scholar
  6. 6.
    F.H. Froes, in: Fourth Israel Materials Engineering Conference, edited by D. Itzhak and D. Eliezer, (Weizmann Press, Jerusalem, Israel, 1991), p. 1.Google Scholar
  7. 7.
    F.H. Froes, Material and Design, X, No. 3, 110 (May/June 1989).CrossRefGoogle Scholar
  8. 8.
    F.H. Froes, Swiss Materials, 2, 23 (1990).Google Scholar
  9. 9.
    F.H. Froes, Materials Edge, 19 (May 1988).Google Scholar
  10. 10.
    F.H. Froes, in: US BOM Conference on Advanced Materials-Outlook and Information Requirements, edited by Louis J. Sousa and Charles A. Sorrell, (US BOM, Washington, D.C., 1990), p. 41.Google Scholar
  11. 11.
    F.H. Froes, Materials Edge, 17 (May/June 1989).Google Scholar
  12. 12.
    F.H. Froes and C. Suryanarayana, Workshop on Advanced Materials, Minsk, USSR, May 29-June 2, 1989, Rapid Solidification and Mechanical Alloying: State-of-the-Art and Technological Implications, and to be published in the proceedings.Google Scholar
  13. 13.
    F.H. Froes, in: Proceedings of Second Int. SAMPE Metals and Metals Proc. Conference on Space Age Metals Technology, edited by F.H. Froes and R.A. Cull, (Dayton, OH, 1988), p. 1.Google Scholar
  14. 14.
    Materials Science and Engineering for the 1990’s, NRC National Academy Press, NW, Washington, D. C, (1989).Google Scholar
  15. 15.
    M.F. Ashby, Phil. Trans. Roy. Soc., London, A322, 393 (1987).ADSGoogle Scholar
  16. 16.
    D.L. McDaniels, T.T. Serafini, and J.A. DiCarlo, J. of Energy Sys., 8, 80 (1986).CrossRefGoogle Scholar
  17. 17.
    Robert A. Sprague, Ad. Mats. and Proc., 67 (Jan. 1988).Google Scholar
  18. 18.
    G.W. Meetham, in: High Temperature Alloys for Gas Turbine and Other Applications, (Reidel Publishing Co., 1986).Google Scholar
  19. 19.
    David L. McDaniels, and Joseph R. Stephens, NASA Tech. Memo. #100844, (June 1988), Lewis Research Center, Cleveland, OH.Google Scholar
  20. 20.
    Defense News, 6, No. 24, 1 (June 17, 1991).Google Scholar
  21. 21.
    H.A. Lipsitt, in: High Temperature Ordered Intermetallic Alloys, edited by C.C. Koch, C.T. Liu, and N.S. Stoloff, (MRS, Pittsburgh, PA, 39, 1985), p. 352.Google Scholar
  22. 22.
    C.T. Liu, F.H. Froes, and J. Stiegler, Metals Handbook, Tenth Edition, ASM Int., Materials Park, OH 2, 913 (1990).Google Scholar
  23. 23.
    F.H. Froes, C. Suryanarayana, and D. Eliezer, Iron and Steel Inst. of Japan Int., 31, 1235 (1991).CrossRefGoogle Scholar
  24. 24.
    A.I. Taub and R.L. Fleischer, Science, 243, 616 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    Zou Dunxu, Private Comm, 16 Jan. 1991, Central Iron and Steel Research Inst. Beijing, PRC.Google Scholar
  26. 26.
    J.J. Jackson and D.A. Siemens, reported by John H. Moll, Charles F. Yolton, and Brian J. McTiernan, Int. J. of P/M, 26, 149 (1990).Google Scholar
  27. 27.
    Y. Nishiyama, T. Miyashita, S. Isobe, and T. Noda, in: High Temperature Aluminides and Intermetallics, edited by S.H. Whang, C.C. Liu, D.P. Pope, and J.O. Stiegler, (TMS, Warrendale, PA, 1990), p. 557.Google Scholar
  28. 28.
    E.K. Hoffman, R.K. Bird, and T.T. Bales, in: Light-Weight Alloys for Aerospace Applications, edited by E.H. Chia and N.J. Kim, (TMS-AIME, Warrendale, PA, 1989), p. 481.Google Scholar
  29. 29.
    K.K. Chawla, Composite Materials-Science and Technology, (Springer-Verlag, New York, 1987).Google Scholar
  30. 30.
    Pamela K. Brindley, in: High Temperature Ordered Intermetallic Alloys II, edited by N.S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi, (MRS, Pittsburgh, PA, 81, 1987), p. 419.Google Scholar
  31. 31.
    M. Mittnick, F.H. Froes, and R. MacKay, in: Metal Matrix Composites, edited by A.R. Begg, (Edward Arnold, Sevenoaks, Kent, UK, 1993).Google Scholar
  32. 32.
    R. MacKay, P.K. Brindley, and F.H. Froes, JOM, 43, 23 (May 1991).ADSCrossRefGoogle Scholar
  33. 33.
    P.R. Smith and F.H. Froes, JOM 36, 19 (March 1984).Google Scholar
  34. 34.
    J.I. Eldridge and P.K. Brindley, J. of Mat. Sci. Letts. 8, 1451 (1989).CrossRefGoogle Scholar
  35. 35.
    James M. Larsen, Katherine A. Williams, Stephen J. Balsone, and Monica A. Stucke, in: High Temperature Aluminides and Intermetallics, edited by S.H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler, (TMS, Warrendale, PA, 1990), p. 521.Google Scholar
  36. 36.
    S.M. Russ, Met Trans., 21A, 1595 (June 1990).Google Scholar
  37. 37.
    L. Christodoulou and J.M. Brupbacher, Materials Edge, 29 (Nov/Dec 1990).Google Scholar
  38. 38.
    D. Dix, Defense News, 7 (July 16, 1990).Google Scholar
  39. 39.
    David Driver, in: High Temperature Materials for Power Engineering, edited by E. Bachelet et al., (Kluwer Acad. Pubs. Dordrecht, The Netherlands, part 11, 1990), p. 883.Google Scholar
  40. 40.
    T.M.F. Ronald, Ad. Mats, and Proc., 135, No. 5, (1989).Google Scholar
  41. 41.
    Vicki P. McConnell, Advanced Composites, 37 (Nov/Dec 1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • F. H. Froes
    • 1
  • C. Suryanarayana
    • 1
  • I. S. Polkin
    • 2
  1. 1.Institute for Materials and Advanced Processes (IMAP)College of Mines University of IdahoMoscowUSA
  2. 2.All Union Institute for Light Alloys (VILS)MoscowUSSR

Personalised recommendations