Advertisement

Optical Properties of New Materials

  • Rubén G. Barrera

Abstract

An overall picture of the scientific activity of the mexican community in the area of optical properties of solids is presented. The latest work in new materials is emphasized and the main achievements of the theoretical group of the Institute of Physics at the National University of Mexico (UNAM) are reported. These achievements are in the field of optical properties of inhomogeneous media and they comprise: the determination of the surface impedance of the surface region, a new optical spectroscopy based on surface-induced optical anisotropies and a theory for the calculation of the effective dielectric response in composite materials.

Keywords

Dielectric Function Surface Impedance Filling Fraction Main Achievement Germanium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catàlogo de Programas y Recursos Humanos en Física (Catalogue of Programs and Human Resources in Physics). Published by the Mexican Physical Society, 1991.Google Scholar
  2. 2.
    M.A. Pérez-Angón, Bull. of the Mex. Phys. Soc. 51, 67 (1991).Google Scholar
  3. 3.
    A. Bagchi, R.G. Barrera, and B.B. Dasgupta, Phys. Rev. Letters 44, 1475 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    R.G. Barrera and A. Bagchi, Phys. Rev. B 14, 1612 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    A. Bagchi, R.G. Barrera, and R. Fuchs, Phys. Rev. B 25, 7086 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    W.L. Mochán, R. Fuchs, and R.G. Barrera, Phys. Rev. B 27, 771 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    W.L. Mochán and R.G. Barrera, J. de Physique, 45 Colloque C5, 207 (1984).Google Scholar
  8. 8.
    D.E. Aspnes and A.A. Studna, Phys. Rev. Letters 54, 1956 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    D.E. Aspnes, J. Vac. Sci. and Technol. B 3, 1138 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Aspnes, J. Vac. Sci. and Technol. B 3, 1498 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    S. Acosta-Ortiz and A. Lastras, Solid State Commun. 64, 809 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    W.L. Mochán and R.G. Barrera, Phys. Rev Letters 55, 1192 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    See for example Classical Electromagnetic Radiation by J.B. Marion (Academic Press, New York, 1965) p. 283.Google Scholar
  14. 14.
    W.L. Mochán and R.G. Barrera, Phys. Rev. Lett. 56, 2221 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    F. Browers, A. Ramsamugh, and V.V. Dixit, J. Mat. Sci. 22, 2759 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    J.C. Maxwell, A Treatise on Electricity and Magnetism. Vol 1 (Reprint: Dover, New York, 1954) Sec. 314, p. 440.Google Scholar
  17. 17.
    See for example the historical review of Rolf Landauer on Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J.C. Garland and D.B. Tanner (American Institute of Physics, New York, 1978), p. 2.Google Scholar
  18. 18.
    J.C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).ADSCrossRefGoogle Scholar
  19. 19.
    See for example J.D. Jackson, Classical Electrodynamics, Second Edition (J. Wiley and Sons, New York, 1975), Chapter 4.zbMATHGoogle Scholar
  20. 20.
    For a very complete account of the different procedures proposed, see for example: Electrical Transport and Optical Properties of Inhomogeneous Media. (AIP Conference Proceedings. Number 40). edited by J.C. Garland and D.B. Tanner (American Institute of Physics, New York, 1978); Electrodynamics of Interfaces and Composite Systems, Advanced Series in Surface Science. Vol 4. edited by R.G. Barrera and W.L. Mochán (World Scientific, Singapore, 1988); ETOPIM 2. Proceedings of the Second International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. Lafait and D.B. Tanner (North Holland, Amsterdam, 1989Google Scholar
  21. 21.
    R.G. Barrera, G. Monsivais, and W.L. Mochán, Phys. Rev. B 38, 5371 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    See for example J.D. Jackson, Classical Electrodynamics, Second Edition (J. Wiley, New York, 1975), Sec. 4.5.zbMATHGoogle Scholar
  23. 23.
    R.G. Barrera, G. Monsivais, W.L. Mochán, and E. Anda, Phys. Rev. B 39, 9998 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    R. G. Barrera, P. Villaseñor-González, W.L. Mochán, M. del Castillo-Mussot, and G. Monsivais, Phys. Rev B 39, 3522 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    R.G. Barrera, P. Villaseñor-González, W.L. Mochán, and G. Monsivais, Phys. Rev. B 41, 7370 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    R.G. Barrera, J. Giraldo, and W.L. Mochán, MRS Proceedings, 253 Boston (1991); Phys. Rev B, submitted (1992).Google Scholar
  27. 27.
    B. Cichocki and B.U. Felderhof, J. Chem. Phys. 90, 4960 (1989).ADSCrossRefGoogle Scholar
  28. 28.
    S. Kumar and R.I. Cukier, J. Phys. Chem. 93, 4334 (1989).CrossRefGoogle Scholar
  29. 29.
    D.J. Bergman, Phys. Rep. 43, 377 (1978).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    R.G. Barrera, C. Noguez, and E.V. Anda, J. Chem. Phys. 96, 1574 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Rubén G. Barrera
    • 1
  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.Mexico

Personalised recommendations