Phase Transition in Wangiella Dermatitidis: Identification of Cell-Division-Cycle Genes Involved in Yeast Bud Emergence

  • Chester R. CooperJr.

Abstract

Yeast-to-multicellular-form (Y→Mc) conversion in the darkly-pigmented (dematiaceous), pathogenic fungus Wangiella dermatitidis represents an excellent model to investigate similar phase transitions exhibited by other dematiaceous fungi upon invasion of host tissue. The yeast-phase cell cycle of W. dermatitidis and its role in Y→Mc conversion was studied by previous investigators using temperature-sensitive (ts) morphological mutants. Both the mutants, designated multicellular (Mc) strains, and the parental wild type grow as virtually indistinguishable budding yeasts at the permissive temperature (25 °C). However, at the restrictive temperature (37 °C), the Mc strains quantitatively undergo Y→Mc conversion whereas the wild type continues to grow as a yeast. In two Mc strains, Mc2 and Mc3, the ts lesions reflect distinct cell-cycle execution points for yeast bud emergence. This suggests that the ts lesions delimit separate mutations in one or more genes.

Because W. dermatitidis is an asexual fungus, a parasexual system of genetic analysis was established to investigate the relationship of the ts lesions in strains Mc2 and Mc3. Specifically, spheroplasts of melanin-deficient (albino) auxotrophs independently derived from strains Mc2 and Mc3 were fused and regenerated at 25 °C in minimal medium. The resulting fusion products were dematiaceous and prototrophic. At 37°C, all fusion products exhibited polarized growth predominantly as uninucleate yeasts and less frequently as moniliform hyphae. These results indicated that the mutation in each Mc parental strain was complemented by a wild-type allele present in its fusion partner. Subsequent analysis of albino ts segregants derived from one fusion product demonstrated that the ts lesions in strains Mc2 and Mc3 were non-allelic. Hence, the genes defined by these mutations have been designated CDC1 and CDC2, respectively. These are the first cell-division-cycle genes identified in a dematiaceous fungus. Their discovery provides the basis for additional studies into the molecular mechanisms involved in fungal morphogenesis and pathogenesis.

Keywords

Migration Glycol Arginine Methionine Chitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. McGinnis, “Laboratory Handbook of Medical Mycology”, Academic Press, New York (1980).Google Scholar
  2. 2.
    J. W. Rippon, “Medical Mycology: The Pathogenic Fungi and the Pathogenic Actinomycetes”,3rd ed., W. B. Saunders, Philadelphia (1988).Google Scholar
  3. 3.
    K. J. Kwon-Chung and J. E. Bennett, “Medical Mycology”, Lea and Febiger, Philadelphia (1992).Google Scholar
  4. 4.
    J. M. B. Smith, The pathogenesis of opportunistic mycoses in man, Microbiol. Sci. 3: 122 (1986).PubMedGoogle Scholar
  5. 5.
    T. J. Walsh and P. A. Pizzo, Nosocomial fungal infections: a classification for hospital-acquired fungal infections and mycoses arising from endogenous flora or reactivation, Ann. Rev. Microbiol 42: 517 (1988).CrossRefGoogle Scholar
  6. 6.
    G. C. Ainsworth, Pathogenicity of fungi in man and animals, in : “Microbial Pathogenicity”, J. W. Howie and A. J. O’Hea, eds., Cambridge University Press, Cambridge (1955).Google Scholar
  7. 7.
    D. H. Howard, The morphogenesis of the parasitic form of the dimorphic fungi, Mycopathol.Mycol. Appl. 18: 127 (1962).CrossRefGoogle Scholar
  8. 8.
    F. Mariat, Saprophytic and parasitic morphology of pathogenic fungi, in : “Microbial Behavior,In Vivo and In Vitro”, H. Smith, ed., Cambridge University Press, Cambridge (1964).Google Scholar
  9. 9.
    J. W. Rippon, Dimorphism in pathogenic fungi, Crit. Rev. Microbiol. 8: 49 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    A. H. Romano, Dimorphism, in : “The Fungi: An Advanced Treatise”, Vol. 2, G. C. Ainsworth and A. S. Sussman, eds., Academic Press, New York (1966).Google Scholar
  11. 11.
    P. R. Stewart and P. J. Rogers, Fungal dimorphism: a particular expression of cell wall morphogenesis, in : “The Filamentous Fungi”, vol. 3, J. E. Smith and D. R. Berry , eds., John Wiley and Sons, New York (1978).Google Scholar
  12. 12.
    P. J. Szaniszlo, An introduction to dimorphism among zoopathogenic fungi, in : “Fungal Dimorphism: With Emphasis on Fungi Pathogenic for Humans”, P. J. Szaniszlo, ed., Plenum Press, New York (1985).Google Scholar
  13. 13.
    B. E. Taylor, M. H. Wheeler and P. J. Szaniszlo, Evidence for pentaketide melanin biosynthesis in dematiaceous human pathogenic fungi, Mycologia 79: 320 (1987).CrossRefGoogle Scholar
  14. 14.
    M. H. Wheeler and A. A. Bell, Melanins and their importance in pathogenic fungi, Cur. Topics Med. Mycol. 2: 338 (1987).CrossRefGoogle Scholar
  15. 15.
    D. M. Dixon, P. J. Szaniszlo and A. Polak, Dihydroxynaphthalene (DHN) melanin and its relationship with virulence in the early stages of phaeohyphomycosis, in : The Fungal Spore and Disease Initiation in Plants and Animals”, G. T. Cole and H. C. Hoch, eds., Plenum Press, New York (1991).Google Scholar
  16. 16.
    M. R. McGinnis, Chromoblastomycosis and phaeohyphomycosis: New concepts, diagnosis, and mycology, J. Amer. Acad. Dermatol. 8: 1 (1983).CrossRefGoogle Scholar
  17. 17.
    P. J. Szaniszlo, C. W. Jacobs, and P. A. Geis, Dimorphism: morphological and biochemical aspects, in : “Fungi Pathogenic for Humans and Animals”, part A (biology), D. Howard, ed., Dekker, New York (1983).Google Scholar
  18. 18.
    B. H. Cooper, Phialophora verrucosa and other chromoblastomycotic fungi, in : “Fungal Dimorphism: With Emphasis on Fungi Pathogenic for Humans”, P. J. Szaniszlo, ed., Plenum Press, New York (1985).Google Scholar
  19. 19.
    T. Matsumoto, T., A. A. Padhye, L. Ajello and P. G. Standard, Critical review of human isolates of Wangiella dermatitidis, Mycologia 76: 232 (1984).CrossRefGoogle Scholar
  20. 20.
    W. Naka, T. Harada, T. Nishikawa and R. Fukushiro, A case of chromoblastomycosis: with special reference to the mycology of the isolated Exophiala jeanselmei, Mykosen 29: 445 (1986).CrossRefGoogle Scholar
  21. 21.
    P. J. Szaniszlo, P. H. Hsieh and J. D. Marlowe, Induction and ultrastructure of the multicellular (sclerotic) morphology in Phialophora dermatitidis, Mycologia 68: 117 (1976).CrossRefGoogle Scholar
  22. 22.
    P. H. Hsieh, “Growth and Developmental Characteristics in Phialophora dermatitidis and Other Chromoblastomycotic Fungi”, M. A. Thesis, Univ. of Texas, Austin (1974).Google Scholar
  23. 23.
    J. D. Marlowe, “The Development of the Sclerotic Cell in Agents of Chromoblastomycosis: An Ultrastructural Study”, M. A. Thesis, Univ. of Texas, Austin (1977).Google Scholar
  24. 24.
    P. J. Szaniszlo, P. A. Geis, C. W. Jacobs, C. R. Cooper, Jr. and J. L. Harris, Cell-wall changes associated with yeast-to-multicellular-form conversion in Wangiella dermatitidis ,in : “Microbiology-1983”, D. Schlessinger, ed., American Society for Microbiology, Washington, D.C. (1983).Google Scholar
  25. 25.
    P. A. Geis and C. W. Jacobs, Polymorphism of Wangiella dermatitidis ,in : “Fungal Dimorphism:With Emphasis on Fungi Pathogenic for Humans”, P. J. Szaniszlo, ed., Plenum Press, New York (1985).Google Scholar
  26. 26.
    J. R. Pringle and L. H. Hartwell, The Saccharomyces cerevisiae cell cycle, in : “The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance”, J. N. Strathern, E. W. Jones and J. R. Broach, eds., Cold Spring Harbor Monographs, Cold Spring Harbor, New York (1981).Google Scholar
  27. 27.
    K. Madden, C. Costigan and M. Snyder, Cell polarity and morphogenesis in Saccharomyces cerevisiae, Trends Cell Biol. 2: 22 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    R. L. Roberts and P. J. Szaniszlo, Temperature-sensitive multicellular mutants of Wangiella dermatitidis, J. Bacteriol. 135: 622 (1978).PubMedGoogle Scholar
  29. 29.
    R. L. Roberts, R. J. Lo and P. J. Szaniszlo, Nuclear division in temperature-sensitive multicellular mutants of Wangiella dermatitidis, J. Bacteriol. 137: 1456 (1979).PubMedGoogle Scholar
  30. 30.
    P. A. Geis, “Chemical Composition of the Yeast and Sclerotic Cell Walls of Wangiella dermatitidis” ,Ph. D. Dissertation, Univ. of Texas, Austin (1981).Google Scholar
  31. 31.
    J. L. Harris and P. J. Szaniszlo, Localization of chitin in walls of Wangiella dermatitidis using colloidal gold-labeled chitinase, Mycologia 78: 853 (1986).CrossRefGoogle Scholar
  32. 32.
    C. R. Cooper, Jr., J. L. Harris, C. W. Jacobs and P. J. Szaniszlo, Effects of polyoxin AL on cellular development in Wangiella dermatitidis, Exper. Mycol. 8: 349 (1984).CrossRefGoogle Scholar
  33. 33.
    C. R. Cooper, Jr., “Localization of Cell-Wall Components During Vegetative Morphogenesis in Wangiella dermatitidis” ,M. A. Thesis, Univ. of Texas, Austin (1983).Google Scholar
  34. 34.
    C. W. Jacobs, R. L. Roberts, and P. J. Szaniszlo, Reversal of multicellular-form development in a conditional morphological mutant of the fungus Wangiella dermatitidis, J. Gen. Microbiol. 131: 1719 (1985).Google Scholar
  35. 35.
    R. L. Roberts and P. J. Szaniszlo, Yeast-phase cell cycle of the polymorphic fungus Wangiella dermatitidis, J. Bacteriol. 144: 721 (1980).PubMedGoogle Scholar
  36. 36.
    C. W. Jacobs and P. J. Szaniszlo, Microtubule function and its relation to cellular development and the yeast cell cycle in Wangiella dermatitidis, Arch. Microbiol. 133: 155 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    K. J. Kwon-Chung, Genetics of fungi pathogenic for man, CRC Crit. Rev. Microbiol. 3: 115 (1974).CrossRefGoogle Scholar
  38. 38.
    W. L. Whelan, The genetics of medically important fungi, CRC Crit. Rev. Microbiol. 14: 99 (1987).CrossRefGoogle Scholar
  39. 39.
    R. T. M. Poulter, “Parasexual genetics of Candida albicans ,in: ’’Candida albicans: Cellular and Molecular Biology”, R. Prasad, ed., Springer-Verlag, Berlin (1991).Google Scholar
  40. 40.
    C. R. Cooper, Jr., “Induced Parasexual Genetic Analysis of the Imperfect, Pathogenic Fungus Wangiella dermatitidis: Identification of Selected Morphogenic and Biosynthetic Complementation Groups”, Ph. D. Dissertation, Univ. of Texas, Austin (1989).Google Scholar
  41. 41.
    J. S. Wood, Genetic effects of methyl benzimidazole-2-yl-carbamate on Saccharomyces cerevisiae, Mol Cell. Biol. 2: 1064 (1982).PubMedGoogle Scholar
  42. 42.
    J. S. Wood, Mitotic chromosome loss induced by methyl benzimidazole-2-yl-carbamate as a rapid mapping method in Saccharomyces cerevisiae ,Mol. Cell. Biol. 2: 1080 (1982).PubMedGoogle Scholar
  43. 43.
    G. Pontecorvo, The parasexual cycle in fungi, Ann. Rev. Microbiol. 10: 393 (1956).CrossRefGoogle Scholar
  44. 44.
    C. R. Cooper, Jr., unpublished data.Google Scholar
  45. 45.
    D. M. Dixon, J. Migliozzi, C. R. Cooper, Jr., O. Solis, B. Breslin, and P. J. Szaniszlo, Melanized and non-melanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies, Mycoses 35: 17 (1992).PubMedCrossRefGoogle Scholar
  46. 46.
    D. G. Drubin, Development of cell polarity in budding yeast, Cell 65: 1093 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Chester R. CooperJr.
    • 1
  1. 1.Molecular Genetics Program and Laboratories for Mycology, Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations