Skip to main content

Clues About Chromoblastomycotic and Other Dematiaceous Fungal Pathogens Based on Wangiella as a Model

  • Chapter
Dimorphic Fungi in Biology and Medicine

Abstract

Wangiella dermatitidis is an excellent model for discovering biologically and medically relevant information about other dematiaceous agents of mycosis. The major attribute of this phaeohyphomycotic fungus, which allows it to serve as a useful model, is its vegetative polymorphism. This polymorphism is expressed both in vivo and in vitro and programs a number of developmental choices leading to polarized growth by budding and hyphal apical extension or to a type of non-polarized, isotropic growth that produces spherically enlarged cells and multicellular forms. The latter phenotypes are virtually identical to the sclerotic bodies of chromoblastomycotic fungi. Study of the phenotypic switching between the polarized and isotropic growth forms has been possible because Wangiella can be induced to form the multicellular bodies from yeasts or hyphae in vitro by manipulation of culture medium pH, or by the incubation of certain cell-divisioncycle mutants at elevated temperatures. It is evident that this particular type of dimorphism involves considerable rearrangement of cell-wall synthetic and deposition patterns, and results from the inhibition of polarized budding or hyphal apical extension, without the inhibition of isotropic growth, nuclear division or cytokinesis. It is also becoming evident that Ca2+ may have a major regulatory role in the switching, because new results showed that at acidic pH a low, but critical, concentration of Ca2+ was crucial for multicellular-body development, higher concentrations allowed maintenance of polarized growth, and that a Ca2+/proton exchange mechanism might be involved. Support for this important role for Ca2+ has also been provided by other new results with EGTA. At high concentrations and at near neutral pH, this Ca2+ chelator caused a stage-specific, cell-cycle arrest in yeast cells, but at lower concentrations induced increasing numbers of cells to convert to multicellular forms. Parallel studies with the chromoblastomycotic fungi showed that Ca2+ also maintained the polarized growth of hyphae at very acidic pH, and that withholding Ca2+ by low concentrations of EGTA at more neutral pH induced isotropism and the formation of sclerotic bodies. These preliminary results with Ca2+ and the chromoblastomycotic fungi further validate the concept that W. dermatitidis continues to be an important model for dematiaceous pathogens of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Szaniszlo, An introduction to dimorphism among zoopathogenic fungi, in: “Fungal Dimorphism: With Emphasis on Fungi Pathogenic for Humans,” P. J. Szaniszlo, ed., Plenum Press, New York (1985).

    Google Scholar 

  2. K. B. Oujezdsky, S. N. Grove and P. J. Szaniszlo, Morphological and structural changes during yeast-to-mold conversion of Phialophora dermatitidis, J. Bacteriol. 113: 468 (1973).

    PubMed  CAS  Google Scholar 

  3. B. H. Cooper, S. Grove, C. Mims and P. J. Szaniszlo, Septal ultrastructure in Phialophora pedrosoi ,Phialophora verrucosa and Cladosporium carrionii, Sabouraudia 11: 127 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. P. J. Szaniszlo, P. A. Geis, C. W. Jacobs, C. R. Cooper and J. L. Harris, Cell wall changes associated with yeast-to-multicellular form conversion in Wangiella dermatitidis. In: “Microbiology-1983”, D. Schessinger, ed., American Society for Microbiology, Washington, D.C. (1983).

    Google Scholar 

  5. P. J. Szaniszlo, B. H. Cooper and H. S. Voges, Chemical compositions of the hyphal walls of three chromomycosis agents, Sabouraudia 10: 94 (1972).

    Article  PubMed  CAS  Google Scholar 

  6. A. R. Bowen, J. L. Chen-Wu, M. Momany, R. Young, P. J. Szaniszlo and P. W. Robbins, Classification of fungal chitin synthases, Proc. Natl. Acad. Sci. USA 89: 519 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. B. E. Taylor, M. H. Wheeler and P. J. Szaniszlo, Evidence for pentaketide melanin biosynthesis in dematiaceous human pathogenic fungi, Mycologia 79: 330 (1987).

    Article  Google Scholar 

  8. D. M. Dixon, A. Polak and P. J. Szaniszlo, Pathogenicity and virulence of wild-type and melanin deficient Wangiella dermatitidis, J. Med. Vet. Mycol. 25: 97 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. P. A. Geis and C. W. Jacobs, Polymorphism in Wangiella dermatitidis ,In: “Fungal Dimorphism: With emphasis on fungi pathogenic for humans”, P. J. Szaniszlo, ed., Plenum Press, New York (1985).

    Google Scholar 

  10. S. N. Grove, K. B. Oujezdsky and P. J. Szaniszlo, Budding in the dimorphic fungus Phialophora dermatitidis, J. Bacteriol. 115: 323 (1973).

    PubMed  CAS  Google Scholar 

  11. P. J. Szaniszlo, P. H. Hsieh and J. D. Marlowe, Induction and ultrastructure of the multicellular (sclerotic) morphology in Phialophora dermatitidis, Mycologia 68: 117 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. K. B. Oujezdsky and P. J. Szaniszlo, Conjugation in the dimorphic chromomycosis fungus Phialophora dermatitidis,J. Bacteriol 114: 1356 (1973).

    PubMed  CAS  Google Scholar 

  13. M. R. McGinnis, Wangiella ,a new genus to accommodate Hormiscium dermatitidis, Mycotaxon 5: 353 (1977).

    Google Scholar 

  14. G. S. DeHoog, Survey of the black yeasts and allied fungi. In: “Studies in Mycology”, Vol. 15,”The Black Yeasts and Allied Hyphomycetes”. G. S. DeHoog and E. J. Hermanides-Nijof, ed., Centraalbureau voor Schimmelcultuur, Baarn, The Netherlands (1977).

    Google Scholar 

  15. L. H. Hartwell, R. K. Mortimer, J. Culotti and M. Culotti, Genetic control of the cell division cycle in yeast, Genetics 74: 267 (1973).

    PubMed  CAS  Google Scholar 

  16. R. L. Roberts and P. J. Szaniszlo, Temperature-sensitive multicellular mutants of Wangiella dermatitidis, J. Bacteriol. 135: 622 (1978).

    PubMed  CAS  Google Scholar 

  17. R. L. Roberts and P. J. Szaniszlo, Yeast-phase cell cycle of the polymorphic fungus VJangiella dermatitidis,J. Bacteriol. 144: 721 (1980).

    PubMed  CAS  Google Scholar 

  18. M. L. Slater, S. O. Sharrow and J. J. Gart, Cell cycle of Saccharomyces cerevisiae in populations growing at different rates, Proc. Natl. Acad. Sci. USA 74: 3850 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. R. L. Roberts, R. J. Lo and P. J. Szaniszlo, Induction of synchronous growth in the yeast phase of Wangiella dermatitidis,J. Bacteriol. 141: 981 (1980).

    PubMed  CAS  Google Scholar 

  20. C. W. Jacobs and P. J. Szaniszlo, Microtubule function and its relation to cellular development and yeast cell cycle in Wangiella dermatitidis, Arch. Microbiol. 133: 155 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. C. R. Cooper, Jr., J. L. Harris, C. W. Jacobs and P. J. Szaniszlo, Effects of polyoxin AL on cellular development in VJangiella dermatitidis, Exp. Mycol. 8: 349 (1984).

    Article  CAS  Google Scholar 

  22. J. L. Harris and P. J. Szaniszlo, Localization of chitin in walls of Wangiella dermatitidis using colloidal gold labeled chitinase, Mycologia 78: 853 (1986).

    Article  CAS  Google Scholar 

  23. J. A. Shaw, P. C. Mol, B. Bowers, S. J. Silverman, M. H. Valdivieso, A. Duran and E. Cabib, The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle, J. Cell. Biol. 114: 111 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. J. Au-Young and P. W. Robbins, Isolation of a chitin synthase gene from Candida albicans by expression in Saccharomyces cerevisiae ,Mol. Microbiol. 4: 197 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. C. E. Bulawa, M. Slater, E. Cabib, J. Au-Young, A. Sburlati, W. L. Adair and P. W. Robbins, The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo ,Cell 40: 213 (1986).

    Article  Google Scholar 

  26. J. Chen-Wu, J. Swicker, A. R. Bowen and P. W. Robbins, Expression of chitin synthase genes during yeast and hyphal growth phases of Candida albicans ,Mol. Microbiol. 6: 497 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. P. J. Szaniszlo and M. Momany, Chitin, chitin synthase and chitin synthase conserved region homologues in Wangiella dermatitidis ,In: “NATO Workshop Proceedings on Molecular Biology and Its Application to Medical Mycology”, B. Maresca, G. Kobayashi, H. Yamaguchi, ed., Springer-Verlag, New York, in press.

    Google Scholar 

  28. Adams, A.E.M., D. Botstein and D. G. Drubin, Requirement of yeast fimbrin for actin organization and morphogenesis in vivo, Nature 354: 404 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. B. F. Sloat, A.E.M. Adams and J. R. Pringle, Roles of CDC24 gene product in cellular morphogenesis during Saccharomyces cerevisiae cell cycle, J. Cell Biol. 89: 395 (1979).

    Article  Google Scholar 

  30. C. Greer and R. Schenkman, Calcium control of Saccharomyces cerevisiae actin assembly, Mol Cell. Biol. 10: 1279 (1982).

    Google Scholar 

  31. Y. Anraku, Y. Ohya and H. Iida, Cell cycle control by calcium and calmodulin in Saccharomyces cerevisiae, Biochim. Biophys. Ada. 1093: 169 (1991).

    Article  CAS  Google Scholar 

  32. P. Baum, C. Furlong and B. Byers, Yeast gene required for spindle pole body duplication: homology of its product with Ca2+ binding proteins, Proc. Natl Acad. Sci USA 83: 5512 (1988).

    Article  Google Scholar 

  33. K. J. Kwon-Chung and J. E. Bennett, “Medical Mycology,” Lea and Febiger, Philadelphia (1992).

    Google Scholar 

  34. K. E. Greer, G. P. Gross, P. H. Cooper and S. A. Harding, Cystic chromomycosis due to Wangiella dermatitidis, Arch. Dermatol. 115: 1433 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. T. Matsumoto, A. A. Padhye, L. Ajello and M. R. McGinnis. Sarcinomyces phaeomuriformis: a new dematiaceous hyphomycete, J. Med. Vet. Mycol. 24: 395 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. A. A. Padhye, W. B. Helwig, N. G. Warren, L. Ajello, F. W. Chandler and M. R. McGinnis, Subcutaneous phaeohyphomycosis caused by Xylohypha emmonsii, J. Clin. Microbiol ,26: 709 (1988).

    PubMed  CAS  Google Scholar 

  37. G. Koshi, V. Anandi, M. Urien, M. G. Kirubakaran, A. A. Padhye and L. Ajello, Nasal phaeohyphomycosis caused by Biopolaris hawaiiensis, J. Med. Vet. Mycol. 25: 397 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. B. H. Cooper, Phialophora verrucosa and other chromoblastomycotic fungi, In: “Fungal Dimorphism: With Emphasis on Fungi Pathogenic for Humans”, P. J. Szaniszlo, ed., Plenum Press, New York (1985).

    Google Scholar 

  39. J. W. Rippon, “Medical Mycology: The Pathogenic Fungi and The Pathogenic Actinomycetes,”W. B. Saunders (1988).

    Google Scholar 

  40. H. O. Duque, Meningo-encephalitis and brain abscess caused by Cladosporium and Fonsecaea, Am. J. Clin. Pathol. 36: 505 (1961).

    PubMed  CAS  Google Scholar 

  41. H. Ari and J. Endo, Deep mycoses (Fonsecaea pedrosoii and Paecilomyces lilacinus) after liver transplant, Trop. J. Clin. Dermatol. 31: 481 (1977).

    Google Scholar 

  42. R. D. Azulay and J. Serruya, Hematogenous dissimination of chromoblastomycosis. Report of a generalized case, Arch. Dermatol 95: 57 (1967).

    Article  PubMed  CAS  Google Scholar 

  43. P. A. Wackym, C. F. Graz, R. F. Richie and C. R. Gregg, Cutaneous chromomycosis in renal transplants patients, Arch. Intern. Med. 145: 1036 (1985).

    Article  PubMed  CAS  Google Scholar 

  44. T. Iwatsu and M. Miyaji, Subcutaneous cyst caused by Phialophora verrucosa, Mycopathologia 64: 165 (1978).

    Article  PubMed  CAS  Google Scholar 

  45. Y. Kameda and T. Sasaki, A case of phaeomycotic cyst caused by Phialophora verrucosa, Japan J. Med. Mycol. 25: 379 (1979).

    Article  Google Scholar 

  46. I. Roitt, J. Brostoff and D. Male, “Immunology,” 2nd ed., Medical Publishing (1989).

    Google Scholar 

  47. M. W. Berhese and R. Snyderman, “Human monocytes and macrophages,” Academic Press,London (1989).

    Google Scholar 

  48. M. Lichtenheld, A. Hameed and R. Podack, Structure of perforin and of esterases (granzymes) in human cytolytic granules, In: “Cellular Basis of Immune Modulation,” J. K. Kaplan, D. R. Green and R. C. Beakley, eds., Alan R. Liss, Inc., New York, (1988).

    Google Scholar 

  49. I. A. Silver, R. J. Murrilo and D. F. Etherington, Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts, Exp. Cell. Res. 175: 206 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Szaniszlo, P.J., Mendoza, L., Karuppayil, S.M. (1993). Clues About Chromoblastomycotic and Other Dematiaceous Fungal Pathogens Based on Wangiella as a Model. In: Vanden Bossche, H., Odds, F.C., Kerridge, D. (eds) Dimorphic Fungi in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2834-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2834-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6226-5

  • Online ISBN: 978-1-4615-2834-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics