Skip to main content

L-Ascorbic and D-Isoascorbic Acids: Chiron Sources for 1′,2′ -SECO-Nucleosides/Tides, Phosphonates, and Other Molecules of Biological Interest

  • Chapter
Nucleosides and Nucleotides as Antitumor and Antiviral Agents

Abstract

The introduction of acyclovir (ACV, 1a) as a clinically useful anti-herpetic drug has spurred interest in other acyclic nucleosides as potential chemotherapeutic agents. Ganciclovir (DHPG, 1b), a closely related analog, has found clinical utility in the treatment of infections caused by human cytomegalovirus (HCMV). Among several acyclic nucleosides, a few have shown promising anti-HIV activity. Adenallene (2a) and cytallene (2b) are two such compounds that inhibit the expression of HIV-1 gag-encoded protein and suppress DNA synthesis at concentrations that do not affect normal T-cells in vitro.1 9-[(2-Phosphonylmethoxy)ethyl]adenine (PMEA, 3a) and S-9-[(3-hydroxy-2-phosphonyl-methoxy)propyl]adenine (HPMPA, 3b) and -cytosine (HPMPC, 3c) are phosphonic acid derivatives that have been found to be active against a series of DNA2 as well as HIV viruses.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Hayashi, S. Phadatre, J. Zemlicka, M. Matsukura, H. Matsuya, and S. Broder, Adenallene and cytallene: Acyclic nucleoside analogs that inhibit replication and cytopathic effect of human immunodeficiency virus in vitro, Proc. Natl. Acad. Sci. USA, 85:6127 (1988).

    Article  CAS  Google Scholar 

  2. E. De Clercq, T. Sakuma, M. Baba, R. Pauwels, J. Balzarini, I. Rosenberg, and A. Holy, Antiviral activity of phosphonylmethoxyalkyl derivatives of purines and pyrimidines, Antiviral Res. 8:261 (1987).

    Article  PubMed  Google Scholar 

  3. R. Pauwels, J. Balzarini, D. Schols, M. Baba, J. Desmyter, I. Rosenberg, A. Holy, and E. De Clercq, Phosphonylmethoxyethylpurine derivatives. A new class of anti-human immunodeficiency virus agents, Antimicrob. Agents Chemother. 32:1025(1988).

    Article  CAS  PubMed  Google Scholar 

  4. M. MacCoss, R.L. Tolman, W.T. Ashton, A.F. Wagner, J. Hannah, A.K. Field, J.D. Karkas, and J.I. Germershausen, Synthetic, biochemical and antiviral aspects of selected acyclonucleosides and their derivatives, Chem. Script. 26:113 (1986).

    CAS  Google Scholar 

  5. M. MacCoss, A. Chen, and R. Tolman, Synthesis of the chiral acyclonucleoside antiherpetic agent (S)-9-(2,3-dihydroxy-l-propoxymethyl)guanine, Tetrahedron Lett., 26:1815(1985).

    Article  CAS  Google Scholar 

  6. M. MacCoss, A. Chen, and R. Tolman, Syntheses of all 4 possible diastereomers of the acyclonucleoside 9-(l,2,4-trihydroxy-2-butoxymethyl)guanine from carbohydrate precursors, Tetrahedron Lett. 26:4287 (1985).

    Article  CAS  Google Scholar 

  7. A. Tanaka and K. Yamashita, A novel synthesis of (R)-and (S)-4-hydroxytetrahydro-furan-2-ones, Synthesis, 570 (1987).

    Google Scholar 

  8. E. Abushanab, P. Vemishetti, R.W. Leiby, H.K. Singh, A.B. Mikkilineni, D.C.-J. Wu, R. Saibaba, and R.P. Panzica, The Chemistry of L-ascorbic and D-isoascorbic acids. 1. The preparation of chiral butanetriols and-tetrols, J. Org. Chem. 53:2598 (1988).

    Article  CAS  Google Scholar 

  9. R. Saibaba, M.S.P. Sarma, and E. Abushanab, The Chemistry of L-ascorbic and D-isoascorbic acids. 3: Efficient syntheses of pure R- and S- 1,2-O-isopropylidene-1,2,4-butanetriols, Synth. Commun. 19:3077 (1989).

    Article  CAS  Google Scholar 

  10. P. Vemishetti, R.W. Leiby, E. Abushanab, and R.P. Panzica, A practical synthesis of ethyl l,2,4-triazole-3-carboxylate and its use in the formation of chiral 1′2′-seco-nucleosides of ribovirin, J. Heterocycl. Chem. 25:651 (1988).

    Article  CAS  Google Scholar 

  11. P. Vemishetti, E. Abushanab, R.W. Leiby, and R. P. Panzica, Synthesis of chiral 12′,2′-seco-nucleosides of guanine and uracil, Nucleosides /Nucleotides 8:201 (1989).

    Article  CAS  Google Scholar 

  12. P. Vemishetti, R. Saibaba, R.P. Panzica, and E. Abushanab, The preparation of 2′-deoxy-2′-fluoro-1′,2′-seco-nucleosides as potential antiviral agents, J. Med. Chem. 33:681 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. P. Vemishetti, H.I. El-Subbagh, E. Abushanab, and R.P. Panzica, Synthesis of 1′,2′seco of AZT, Nucleosides /Nucleotides 11:739 (1992).

    Article  CAS  Google Scholar 

  14. E. Abushanab and M.S.P. Sarma, 1′,2′-seco-Dideoxynucleosides as potential anti-HIV agents, J. Med. Chem. 32:76 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. R.A. Long, G.L. Szekeres, T.A. Khwaja, R.W. Sidwell, L.N. Simon, and R.K. Robins, Synthesis and antitumor and antiviral activities of 1-ß-D-arabinofuranosylpyrimidine 3′,5′-cyclic phosphate, J. Med. Chem. 15:1215 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. R.B. Meyer, T.E. Stone, and B. Ulman, 2′-0-Acyl-6-thioinosine cyclic 3′,5′-phosphate as prodrugs of thioinosinic acid, J. Med. Chem. 22:811 (1977).

    Article  Google Scholar 

  17. The author wishes to thank Dr. J. G. Moffat who pointed out a footnote (no. 41) in the following reference describing a similar observation. H.G. Khorana, G.M. Terner, R.W. Wright, and J. G. Moffat, Cyclic phosphates. III. Some general observations on the formation and properties of five-, six-and seven-membered cyclic phosphates, J. Am. Chem. Soc. 79:430 (1957).

    Article  CAS  Google Scholar 

  18. A.F. Cichy, P. Vemishetti, and E. Abushanab, An unusual dephosphorylation reaction, Nucleosides /Nucleotides 8:957 (1989).

    Article  Google Scholar 

  19. R. Engel in “The role of phosphonates in living systems” R.L. Hilderband, Ed., CRC Press, Inc. Boca Raton, FL, 1988.

    Google Scholar 

  20. J. Gorzynski Smith, Synthetically useful reactions of epoxides, Synthesis 629 (1984), and references cited therein.

    Google Scholar 

  21. G.V. Chelintsev and V.K. Kuskov, Diacid tautomerism, J. Gen. Chem. U.S.S.R. 16:1481 (1946); Chem. Abstr. 5441b (1947).

    CAS  Google Scholar 

  22. J. Gasteiger and C. Herzig, ß-Ketophosphonates from α-chlorooxiranes, Tetrahedron Lett., 21:2687 (1980).

    Article  CAS  Google Scholar 

  23. T. Azuhata and Y. Okamoto, Synthesis of diethyl 2-(trimethylsiloxy)-alkane-phosphonates from epoxides and diethyltrimethylsilylphosphite, Synthesis 916 (1983).

    Google Scholar 

  24. T. Azuhata and Y. Okamoto, Synthesis of dialkyl 2-(dialkoxyphosphinyloxy)-alkanephosphonates, Synthesis All (1984).

    Google Scholar 

  25. H. Tanaka, M. Fukui, K. Haraguchi, M. Masaki, and T. Miyasaka, Cleavage of a nucleosidic oxetane with carbanions: Synthesis of a highly promising candidate for anti-HIV agents. A phosphonate isostere of AZT-5′-phoshate, Tetrahedron Lett. 30:2567 (1989).

    Article  CAS  Google Scholar 

  26. S. Racha, Z. Li, H.I. E1-Subbagh, and E. Abushanab, A facile synthesis of ß-and γ-hydroxyphosphonates from epoxides, Tedrahedron Lett. 33:5491 (1992).

    Article  CAS  Google Scholar 

  27. S. Racha, H.I. El-Subbagh, C. Vargeese, R.P. Panzica, and E. Abushanab, unpublished results.

    Google Scholar 

  28. A.F. Cichy, R. Saibaba, H.I. El-Subbagh, R.P. Panzica, and E. Abushanab, l′,2′-seco-Thymidines. The preparation of 2,3′-anhydro derivatives and the formation of two unusual dimeric products, J. Org. Chem. 56:4653 (1991).

    Article  CAS  Google Scholar 

  29. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry, Part A, Plenum Press, New York (1984), p. 147.

    Google Scholar 

  30. K.E. Krakowiak, J.S. Bradshaw, and D. J. Zamecka-Krakowiak, Synthesis of aza-crown ethers, Chem. Rev.89:929 (1989).

    Article  CAS  Google Scholar 

  31. A.B. Mikkilineni, P. Kumar, and E. Abushanab, The Chemistry of L-ascorbic and D-isoascorbic acids. 2. R and S Glyceraldehydes from a common intermediate, J. Org. Chem. 53:6005 (1988).

    Article  CAS  Google Scholar 

  32. K. C. Luk and C. C. Wei, Preparation of derivatives of (R)-l,2,3-butanetriol from L-ascorbic acid, Synthesis, 226 (1988).

    Google Scholar 

  33. R. Saibaba, M.S.P. Sarma, and E. Abushanab, The chemistry of L-ascorbic and D-isoascorbic acids. 3: Efficient synthesis of pure R-and S-1,2-O-isopropylidene-1,2,4-butanetriols, Synth. Commun. 19:3077 (1989).

    Article  CAS  Google Scholar 

  34. C. Vargeese and E. Abushanab, Chemistry of L-ascorbic and D-isoascorbic acids. 4. An efficient synthesis of 2-deoxypentofuranoses, J. Org. Cham. 55:4400 (1990).

    Article  CAS  Google Scholar 

  35. Ref. 34 and references cited therein.

    Google Scholar 

  36. J. N. Freskos, Synthesis of 2′-deoxypyrimidine nucleosides via copper(I) iodide catalysis, Nucleosides /Nucleotides 8:549 (1989).

    Article  CAS  Google Scholar 

  37. T. Okauchi, H. Kubota, and K. Narasaka, Stereoselective syntheses of ß-2-deoxy-ribonucleosides from l-O-acetyl-3-O-[2-(methylsulfmyl)ethyl]-2-deoxyribose, Chem. Lett. 801 (1989).

    Google Scholar 

  38. L. Wilson and D. Liotta, A general method for controlling glycosylation stereochemistry in the synthesis of 2′-deoxyribose nucleosides, Tetrahedron Lett. 31:1815(1990).

    Article  CAS  Google Scholar 

  39. C.K. Chu, J.R. Babu, J.W. Beach, S.K. Ahn, H. Huang, L.S. Jeong, and S.J. Lee, A highly stereoselective glycosylation of 2-(phenylselenyl)-2,3-dideoxy-ribose derivative with thymine: Synthesis of 3′-deoxy-2′,3′-didehydrothymidine and 3′-deoxythmidine, J. Org. Chem. 55:1418 (1990).

    Article  CAS  Google Scholar 

  40. H.I. E1-Subbagh, L.J. Ping and E. Abushanab, A stereospecific synthesis of pyrimidine b-D-2′-deoxyribonucleosides, Nucleosides /Nucleotides 11:603 (1992).

    Article  CAS  Google Scholar 

  41. D.H. Shannanhoff and R.A. Sanchez, 2,2′-Anhydropyrimidine nucleosides. Novel syntheses and reactions, J. Org. Chem. 38:893 (1973).

    Google Scholar 

  42. W.J. Humphlett, Synthesis of some esters and lactones of aldonic acids, Carbohydr.Res.4:157 (1967).

    Article  CAS  Google Scholar 

  43. K. Bock, I. Lundt, and C. Pedersen, Preparation of 3-deoxyaldonolactones by hydrogenolysis of acetylated aldonolactones, Acta Chem. Scand. Ser. B 155 (1981).

    Article  Google Scholar 

  44. C. Vargeese and E. Abushanab, A practical and stereospecific approach to the synthesis of 3′-deoxy-2′,3′-didehydrothymidine (D4T), Nucleosides /Nucleotides 11:1549(1992).

    Article  CAS  Google Scholar 

  45. K. Teng, V.E. Marquez, G.W.A. Milne, J.J. Barchi, Jr., M.G. Kazanietz, N.E. Lewin, P.M. Blumberg, and E. Abushanab, Conformationally constrained analogues of diacylglycerol. Interaction of ã-lactones with the phorbol ester receptor of protein kinase C, J. Am. Chem. Soc. 144:1061 (1992).

    Google Scholar 

  46. T. Haertle, C.J. Carrera, D.B. Wasson, L.C. Sowers, D.D. Richman, D.A. Carson, Metabolism and anti-human immunodeficienty virus-1 activity of 2-halo-2′,3′-dideoxyadenosine derivatives, J. Biol. Chem. 263:5870 (1988).

    CAS  PubMed  Google Scholar 

  47. H.J. Schaeffer, C.F. Schwender, Enzyme Inhibitors: XXVI. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)-adenines, J. Med. Chem. 17:6(1974).

    Article  CAS  PubMed  Google Scholar 

  48. W.J. Suling, L.S. Rice, W.M. Shannon, Effects of 2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)adenine on plasma levels and urinary excretion of 9-ß-D-arabino-furanosyladenine in the mouse, Cancer Treat. Rep. 62:369 (1978).

    CAS  PubMed  Google Scholar 

  49. G. Bastian, M. Bessodes, R.P. Panzica, E. Abushanab, S.F. Chen, J.D. Stoeckler, and R.E. Parks, Jr., Adenosine deaminase inhibitors. Conversion of a single chiral synthon into erythro- and threo-9-(2-hydroxy-3-nonyl)adenines, J. Med. Chem. 24:1383(1981).

    Article  CAS  PubMed  Google Scholar 

  50. M. Bessodes, G. Bastian, E. Abushanab, R.P. Panzica, S.F. Berman, E.J. Marcaccio, Jr., S.-F. Chen, J.D. Stoeckler, and R.E. Parks, Jr., Effect of chirality in erythro-9-2-hydroxy-3-nonyl)adenine (EHNA) on adenosine deaminase inhibition, Biochem. Pharmacol. 31:879 (1982).

    Article  CAS  PubMed  Google Scholar 

  51. D.C. Baker, J.C. Hanvey, L.D. Hawkins, and J. Murphy, Identification of the bioactive enantiomer of erythro-3-(adenin-9-yl)-2-nonanol (EHNA). A semi-tight binding inhibitor of adenosine deaminase, Biochem. Phaimacol. 30:1159 (1981).

    Article  CAS  Google Scholar 

  52. D.C. Baker and L.D. Hawkins, Synthesis of inhibitors of adenosine deaminase. A total synthesis of erythro-3-(adenin-9-yl)-2-nonanol and its isomers from chiral precursors, J. Org. Chem. 47:2179 (1982).

    Article  CAS  Google Scholar 

  53. M.Y. Chu, E. Chu, E. Abushanab, R. P. Panzica, and P.C. Calabresi, Effects of the chiral isomers of erythro-9-(2-hydroxy-3-nonyl)adenine on the anti-neoplastic activity of adenosine analogs against human pancreatic DAN and human colon HCT-8 carcinomas. Proc. Am. Assoc. Cancer Res. 29:1394 (1988).

    Google Scholar 

  54. W.R. McConnell, S.M. El Dareer, and D.L. Hill, Metabolism and disposition of erythro-9-(2-hydroxy-3-nonyl)[l4C]adenine in the rhesus monkey, Drug Metab. Disp. 8:5 (1980).

    CAS  Google Scholar 

  55. E. Abushanab, M. Bessodes, and K. Antonakis, Practical enantiospecific synthesis of (+)-erythro-9(2S-hydroxy-3R-nonyl)adenine, Tetrahedron Lett. 25: 3841 (1984).

    Article  CAS  Google Scholar 

  56. I. Antonini, G. Cristalli, P. Franchetti, M. Grifantini, S. Martelli, G. Lupidi, and F. Riva, Adenosine deaminase inhibitors. Synthesis of deaza analogues of erythro-9-(2-hydroxy-3-nonyl)adenine, J. Med. Chem. 27:274 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. G. Cristalli, P. Franchetti, M. Grifantini, S. Vittori, G. Lupidi, F. Riva, T. Bordoni, C. Geroni, M.A. Verini, Adenosine deaminase inhibitors. Synthesis and biological activity of deaza analogues of erythro-9-(2-hydroxy-3-nonyl)adenine, J. Med. Chem. 31:390(1988).

    Article  CAS  PubMed  Google Scholar 

  58. H. J. Schaeffer and C.F. Schwender, Enzyme inhibitors XXIV. Bridging hydrophobic and hydrophilic regions on adenosine deaminase, J. Pharm. Sci. 60:1204(1971).

    Article  CAS  PubMed  Google Scholar 

  59. G.C.B. Harriman, A.F. Poirot, E. Abushanab, R.M. Midgett, and J.D. Stoeckler, Synthesis and biological evaluation of C1′ derivatives of (+)-erythro-9-(2S-hydroxy-3R-nonyl)adenine, J. Med. Chem., in press.

    Google Scholar 

  60. H.J. Schaeffer, Design and evaluation of enzyme inhibitors, especially of adenosine deaminase, Topics in medicinal chemistry, Rabinowitz and Myerson, 3:1 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abushanab, E. (1993). L-Ascorbic and D-Isoascorbic Acids: Chiron Sources for 1′,2′ -SECO-Nucleosides/Tides, Phosphonates, and Other Molecules of Biological Interest. In: Chu, C.K., Baker, D.C. (eds) Nucleosides and Nucleotides as Antitumor and Antiviral Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2824-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2824-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6221-0

  • Online ISBN: 978-1-4615-2824-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics