Skip to main content

Allenols Derived from Nucleic Acid Bases — A New Class of Anti-HIV Agents: Chemistry and Biological Activity

  • Chapter
Nucleosides and Nucleotides as Antitumor and Antiviral Agents

Abstract

The last 15 years have witnessed a revival of interest in analogues of nucleosides following the discoveries that several of such compounds exhibit powerful antiviral effects. In this context, two compounds are of particular significance. The first of such analogues is acyclovir (1a, Zovirax) which was developed in the late seventies1 (Chart 1). Acyclovir (1a) is an analogue of 2′-deoxyguanosine of clinical importance as a drug for treatment of herpesvirus infections. The second compound is 3′-azido-3′-deoxythymidine (3b, AZT, zidovudine or Retrovir), an analogue of thymidine, and, until recently, the only approved drug for treatment of acquired immunodeficiency syndrome (AIDS). AZT (3b) was originally prepared in the sixties,2 its antiretroviral potential was recognized in the seventies,3 and it was developed as a therapeutic agent against AIDS in the eighties.4 Drugs 1a and 3b are examples of two structurally different classes of nucleoside analogues. Acyclovir (1a) belongs to a series of open-chain compounds derived by cleavage of at least one C-C bond or deletion of one or more carbon atoms of the sugar ring, whereas AZT (3b) comprises an intact furanose moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.J. Schaeffer, L. Beauchamp, P. de Miranda, G. B. Elion, D. J. Bauer, and P. Collins, 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group, Nature 272:583 (1978).

    Article  PubMed  CAS  Google Scholar 

  2. J. P. Horwitz, J. Chua, and M. Noel, Nucleosides. V. The monomesylates of l-(2′-deoxy-ß-D-lyxofuranosyl)thymine, J. Org. Chem. 29:2076 (1964).

    Article  CAS  Google Scholar 

  3. W. Ostertag, G. Roesler, C. J. Krieg, J. Kind, T. Cole, T. Crozier, G. Gaedicke, G. Steinheider, N. Kluge, and S. Dube, Induction of endogenous virus and thymidine kinase by bromodeoxyuridine in cell cultures transformed by Friend virus, Proc. Natl. Acad. Sci. U.S.A. 71:4980 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. St. Clair, S. W. Lehrman, R. C. Gallo, D. Bolognesi, D. W. Barry, and S. Broder, 3′-Azido-3′-deoxythymidine (BWA 5090): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphoadenopathy — associated virus in vitro, Proc. Natl. Acad. Sci. U.S.A. 82:7096 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. H. J. Schaeffer, S. Gurwara, R. Vince, and S. Bittner, Novel Substrate of Adenosine Deaminase, J. Med. Chem. 14:367(1971).

    Article  PubMed  CAS  Google Scholar 

  6. J. L. Kelly, L. E. Kelsey, W. R. Hall, M. P. Krochmal, and H. J. Schaeffer, Pyrimidine acyclic nucleosides. l-[(2-Hydroxyethoxy)methyl]pyrimidines as candidate antivirals, J. Med. Chem. 24:753 (1981).

    Article  Google Scholar 

  7. H. Mitsuya, M. Matsukura, and S. Broder, Rapid in vitro systems for assessing activity of agents against HTLV-III/LAV, in: “AIDS, Modern Concepts and Therapeutic Challenges,” S. Broder, ed., Marcel Dekker, New York (1987), p. 303.

    Google Scholar 

  8. M. Baba, R. Pauwels, J. Balzarini, P. Herdewijn, and E. De Clercq, Selective inhibition of human immunodeficiency virus (HIV) by 3′-azido-2′,3′-dideoxyguanosine, Biochem. Biophys. Res. Commun. 145:1080 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. R. Dolin, Antiviral chemotherapy and chemoprophylaxis, Science 227:1296 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. H. Mitsuya, R. Yarchoan, and S. Broder, Molecular targets for AIDS therapy, Science 249:1533(1990).

    Article  PubMed  CAS  Google Scholar 

  11. M. M. Mansuri, J. E. Starrett, Jr., I. Ghazzouli, M. J. M. Hitchcock, R. Z. Sterzycki, V. Brankovan, T.-S. Lin, E. M. August, W. H. Prusoff, J.-P. Sommadossi, and J. C. Martin, l-(2,3-Dideoxy-ß-D-glycero-pent-2-enofuranosyl)thymine. A highly potent and selective anti-HIV agent, J. Med. Chem. 32:461 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. M. Baba, R. Pauwels, P. Herdewijn, E. De Clercq, J. Desmyter, and J. Vandeputte, Both 2′,3′-dideoxythymidine and its 2′,3′-unsaturated derivative (2′,3′-dideoxy-thymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro, Biochem. Biophys. Res. Commun. 142:128 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. R. Vince and M. Hua, Synthesis and anti-HIV activity of carbocyclic 2′,3′-didehydro-2′,3′-dideoxy 2,6-disubstituted purine nucleosides, J. Med. Chem. 33:17 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. V. E. Marquez and M.-I. Lim, Carbocyclic nucleosides, Med. Res. Rev.(London) 6:1 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. A. Larsson, K. Stenberg, A.-C. Ericsson, U. Haglund, W. Yisak, N. G. Johansson, B. Öberg, and R. Datema, Mode of action, toxicity, pharmacokinetics, and efficacy of some antiherpes virus analogs related to buciclovir, Antimicrob. Agents Chemother. 30:598 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. M. Hua, P. M. Korkowski, and R. Vince, Synthesis and biological evaluation of acyclic neplanocin A analogues, J. Med. Chem. 30:198 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. S. Phadtare and J. Zemlicka, Synthesis and biological properties of 9-(trans-4-hydro-xy-2-buten-l-yl)adenine and guanine: Open-chain analogues of neplanocin A, J. Med. Chem. 30:437 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. D. R. Haines, C. K. H. Tseng, and V. E. Marquez, Synthesis and biological activity of unsaturated carboacyclic purine nucleoside analogues, J. Med. Chem. 30:943 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. D. R. Borcherding, S. Narayanan, M. Hasobe, J. G. McKee, B. T. Keller, and R. T. Borchardt, Potential inhibitors of S-adenosylmethionine-dependent methyltransfer-ases. 11. Molecular dissections of neplanocin A as potential inhibitors of S-adeno-sylhomocysteine hydrolase, J. Med. Chem. 31:1729 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. W. T. Ashton, L. C. Meurer, C. L. Cantone, A. K. Field, J. Hannah, J. D. Karkas, R. Liou, G. F. Patel, H. C. Perry, A. F. Wagner, E. Walton, and R. L. Tolman, Synthesis and antiherpetic activity of (±)-9-[[(Z)-2-(hydroxymethyl)cyclopropyl]-methyl]guanine and related compounds, J. Med. Chem. 31:2304 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. S. Phadtare, D. Kessel, and J. Zemlicka, Unsaturated nucleoside analogues: Synthesis and antitumor activity, Nucleosides Nucleotides 8:907 (1989).

    Article  Google Scholar 

  22. S. Phadtare, D. Kessel, T. H. Corbett, H. E. Renis, B. A. Court, and J. Zemlicka, Unsaturated and carbocyclic nucleoside analogues: Synthesis, antitumor, and antiviral activity, J. Med. Chem. 34:421 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. S. Phadtare and J. Zemlicka, Allenic derivatives of nucleic acid components and their transformation products: a new class of biologically active nucleoside analogues, Nucleic Acids Res., Symp. Ser. No. 18:25 (1987).

    CAS  Google Scholar 

  24. A. Larsson, S. Alenius, N.-G. Johansson, and B. Öberg, Antiherpetic activity and mechanism of action of 9-(4-hydroxybutyl)guanine, Antiviral Res. 3:77 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. S. Phadtare and J. Zemlicka, Nucleic acid derived allenols: Unusual analogues of nucleosides with antiretroviral activity, J. Am. Chem. Soc. 111:5925 (1989).

    Article  CAS  Google Scholar 

  26. H. Mitsuya and S. Broder, Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphoadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides, Proc. Natl. Acad. Sci. U.S.A. 83:1911 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. A. J. Hubert and H. Reimlinger, Base-catalysed prototropic isomerisations. Part II. The isomerisation of N-prop-2-ynyl heterocycles into N-substituted allenes and acetylenes, J. Chem. Soc. C:606 (1968).

    Google Scholar 

  28. D. Ranganathan, R. Rathi, K. Kesavan, and W. P. Singh, The demonstration of nor-mal O→N Claisen rearrangement in purines, Tetrahedron 42:43873 (1986).

    Google Scholar 

  29. A. A. Khorlin, I. P. Smirnov, S. V. Kochetkova, T. L. Tsilevich, I. L. Shchaveleva, B. P. Gottikh, and V. L. Florent′ev, Compounds similar to acyclovir. IV. Convenient method of synthesising adenallene, Bioorg. Khim. 15:530 (1989); English translation 15:291 (1990).

    PubMed  CAS  Google Scholar 

  30. M. V. Kochetkova, A. V. Tsytovich, and B. I. Mitsner, A convenient approach to the synthesis of nucleic acid allene derivatives, possessing anti-HIV activity, Nucleic Acids Res., Symp. Ser. No. 24:233 (1991).

    Google Scholar 

  31. A. V. Tsytovich, M. V. Kochetkova, E. V. Kuznetsova, B. I. Mitsner, and V.I. Shvets, Acyclic nucleoside analogues. I. Development of allenic nucleoside derivatives synthesis, Bioorg. Khim. 17:1086 (1991) (in Russian).

    CAS  Google Scholar 

  32. S. Phadtare and J. Zemlicka, Synthesis of N1-(4-hydroxy-l,2-butadien-l-yl)thymine, an analogue of 3′-deoxythymidine, J. Org. Chem. 54:3675 (1989).

    Article  CAS  Google Scholar 

  33. S. Phadtare and J. Zemlicka, unpublished experiments.

    Google Scholar 

  34. S. Hayashi, S. Phadtare, J. Zemlicka, M. Matsukura, H. Mitsuya, and S. Broder, Adenallene and cytallene: Acyclic nucleoside analogues that inhibit replication and cytopathic effect of human immunodeficiency virus in vitro, Proc. Natl. Acad. Sci. U.S.A. 85:6127 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. S. Megati, Z. Goren, J. V. Silverton, J. Orlina, H. Nishimura, T. Shirasaki, H. Mitsuya, and J. Zemlicka, R-(-)-and S-(+)-adenallene: Synthesis, absolute configuration, antiretroviral effect, and enzymic deamination, J. Med. Chem. 35:4098 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. C. R. Noe, Chirale Lactole, II. Racematspaltung und enantioselektive Acetalisierung mit der 2,3,3a,4,5,6,7,7a-Octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl-Schutzgruppe, Chem. Ber. 115:1591 (1982).

    Article  CAS  Google Scholar 

  37. S. Phadtare and J. Zemlicka, Allenic derivatives of nucleic acid bases — new acyclic nucleoside analogues with antiretroviral activity, Nucleic Acids Res., Symp. Ser. No. 20:39 (1988).

    CAS  Google Scholar 

  38. P. Van Roey, E. W. Taylor, C. K. Chu, and R. F. Schinazi, Correlation of molecular conformation and activity of reverse transcriptase inhibitors, Ann. N. Y. Acad. Sci. 616:29 (1990).

    Article  PubMed  Google Scholar 

  39. E. W. Taylor, P. Van Roey, R. F. Schinazi, and C. K. Chu, A stereochemical rationale for the activity of anti-HIV nucleosides, Antiviral Chem. Chemother. 1:163 (1990).

    CAS  Google Scholar 

  40. J. March, “Advanced Organic Chemistry”, McGraw-Hill, New York, 1977, p. 24.

    Google Scholar 

  41. W. Runge, Stereochemistry of allenes, in: “The Chemistry of the Allenes”, Vol. 3, S. R. Landor, ed., Academic Press, New York, 1982, p. 579.

    Google Scholar 

  42. N. N. H. Teng, M. S. Itzkowitz, and I. Tinoco, Jr., Calculation of the rotational strength of mononucleosides, J. Am. Chem. Soc. 93:6257 (1971).

    Article  CAS  Google Scholar 

  43. W. Runge, Spectroscopic properties of allenes, in: “The Chemistry of the Allenes”, Vol. 3, S. R. Landor, ed., Academic Press, New York, 1982, p. 777.

    Google Scholar 

  44. R. Gompper and U. Wolf, Synthesen und Reaktionen electronarmer Allene, Liebigs Ann. Chem. 1388 (1979).

    Google Scholar 

  45. S. Phadtare and J. Zemlicka, Synthesis of (Z)-and (E)-N9-(4-hydroxy-l-buten-l-yl)-adenine — new unsaturated analogues of adenosine, Tetrahedron Lett.31:43 (1990).

    Article  CAS  Google Scholar 

  46. J. R. Wiersig, A. N. H. Yeo, and C. Djerassi, Mass spectrometry in structural and stereochemical studies. 247. Electron-impact induced fragmentation of allenes, J. Am. Chem. Soc. 99:532 (1977).

    Article  CAS  Google Scholar 

  47. “The Chemistry of the Allenes11, Vol. 2, S. R. Landor, ed., 1982.

    Google Scholar 

  48. R. Engel, “Synthesis of Carbon-Phosphorus Bond”, CRC Press, Boca Raton, Florida, 1988, p. 21.

    Google Scholar 

  49. Ref. 48, p. 7.

    Google Scholar 

  50. “Nucleotide Analogues as Antiviral Agents”, ACS Symposium Series 401, J. C. Martin, ed., American Chemical Society, Washington, D. C, 1989.

    Google Scholar 

  51. S. Phadtare and J. Zemlicka, Unsaturated analogues of acyclic nucleoside phosphonates: An unusual Arbuzov reaction with unactivated triple bond, Nucleosides Nucleotides 10:275 (1991).

    Article  CAS  Google Scholar 

  52. S. Megati, S. Phadtare, and J. Zemlicka, Unsaturated phosphonates as acyclic nucleotide analogues. Anomalous Michaelis-Arbuzov and Michaelis-Becker reactions with multiple bond systems, J. Org. Chem. 57:2320 (1992).

    Article  CAS  Google Scholar 

  53. M. Huché and P. Cresson, Réactions sigmatropiques d’ordre (2,3) au niveau d’un atome de phosphore, Bull. Soc. Chim. Fr. No. 3-4:800 (1975).

    Google Scholar 

  54. A. J. Kirby and S. G. Warren, “The Organic Chemistry of Phosphorus”, Elsevier, New York, 1967, p.39.

    Google Scholar 

  55. H. Mitsuya and S. Broder, Strategies for antiviral therapy in AIDS, Nature325:773 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. S. Hayashi, S. Phadtare, J. Zemlicka, M. Matsukura, H. Mitsuya, and S. Broder, Adenallene and cytallene, two novel acyclic nucleoside derivatives active against human immunodeficiency virus (HIV) in T-cells and monocytes/macrophages in vitro: Further characterization of anti-viral and cytotoxic activity, in: “Mechanisms of Action and Therapeutic Applications of Biologicals in Cancer and Immune Deficiency Disorders”, Alan R. Liss, Inc., 1989, p. 371.

    Google Scholar 

  57. B. A. Larder, B. Chesebro, and D. D. Richman, Susceptibilities of zidovudine-susceptible and-resistant human immunodeficiency virus isolates to antiviral agents determined by using a quantitative plaque reduction assay, Antimicrob. Agents Chemother. 34:436 (1990).

    Article  PubMed  CAS  Google Scholar 

  58. M. M. Mansuri, V. Farina, J. E. Starrett, Jr., D. A. Benigni, V. Brankovan, and J. C. Martin, Preparation of the geometric isomers of DDC, DDA, D4C and D4T as potential anti-HIV agents, Bioorg. Med. Chem. Lett. 1:65(1991).

    Article  CAS  Google Scholar 

  59. S. Hayashi, M. Matsukura, H. Mitsuya, and S. Broder, unpublished results.

    Google Scholar 

  60. C.-H. Kim, V. E. Marquez, S. Broder, H. Mitsuya, and J. S. Driscoll, Potential AIDS drugs. 2′,3′-Dideoxycytidine analogues, J. Med. Chem. 30:862 (1987).

    Article  PubMed  CAS  Google Scholar 

  61. R. Pauwels, M. Baba, J. Balzarini, P. Herdewijn, J. Desmyter, M. J. Robins, R. Zhou, D. Madej, and E. De Clercq, Investigations on the anti-HIV activity of 2′,3′-dideoxyadenosine analogues with modifications in either the pentose or purine moiety. Potent and selective anti-HIV activity of 2,6-diaminopurine 2′,3′-dideoxy-riboside, Biochem. Pharmacol. 37:1317 (1988).

    Article  PubMed  CAS  Google Scholar 

  62. M. A. Johnson, G. Ahluwalia, M. C. Connelly, D. A. Cooney, S. Broder, D. G. Johns, and A. Fridland, Metabolic pathways for the activation of the antiretroviral agent 2′,3′-dideoxyadenosine in human lymphoid cells, J. Biol. Chem. 263:15354 (1988).

    PubMed  CAS  Google Scholar 

  63. G. I. Birnbaum, M. Cygler, and D. Shugar, Conformational features of acyclonucleo-sides: structure of acyclovir, an antiherpes agent, Can. J. Chem. 62:2646 (1984).

    Article  CAS  Google Scholar 

  64. P. Van Roey, J. M. Salerno, C. K. Chu, and R. F. Schinazi, Correlation between preferred sugar conformation and activity of nucleoside analogues against human immunodeficiency virus, Proc. Natl. Acad. Sci. U.S.A. 86:3929 (1989).

    Article  PubMed  Google Scholar 

  65. C. K.-H. Tseng, V. E. Marquez, G. W. A. Milne, R. J. Wysocki, Jr., H. Mitsuya, T. Shirasaki, and J. S. Driscoll, A ring-enlarged oxetanocin A analogue as an inhibitor of HIV infectivity, J. Med. Chem. 34:343 (1991).

    Article  PubMed  CAS  Google Scholar 

  66. C. K. Chu, S. K. Ahn, H. O. Kim., J. W. Beach, A. J. Alves, L. S. Jeong, Q. Islam, P. Van Roey, and R. F. Schinazi, Asymmetric synthesis of enantiomerically pure (-)-(1′R,4′R)-dioxolane-thymine and its anti-HIV activity, Tetrahedron Lett. 32: 3791 (1991).

    Article  CAS  Google Scholar 

  67. Y.-C. Liaw, Y.-G. Gao, V. E. Marquez, and A. H.-J. Wang, Molecular structures of two new anti-HIV nucleoside analogs: 9-(2,3-dideoxy-2-fluoro-ß-D-rhreo-pento-furanosyl)adenine and 9-(2,3-dideoxy-2-fluoro-ß-D-rthreo-pentofuranosyl)hypo-xanthine, Nucleic Acids Res. 20:459 (1992).

    Article  PubMed  CAS  Google Scholar 

  68. S. Eriksson, B. Kierdaszuk, B. Munch-Petersen, B. Öberg, and N. G. Johansson, Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogues, Biochem. Biophys. Res. Commun. 176:586 (1991).

    Article  PubMed  CAS  Google Scholar 

  69. B. Kierdaszuk, C. Bohman, B. Ullman, and S. Eriksson, Substrate specificity of human deoxycytidine kinase toward antiviral 2′,3′-dideoxynucleoside analogues, Biochem. Pharmacol. 43:197 (1992).

    Article  PubMed  CAS  Google Scholar 

  70. D. A. Cooney, G. Ahluwalia, H. Mitsuya, A. Fridland, M. Johnson, Z. Hao, M. Dalai, J. Balzarini, S. Broder, and D. G. Johns, Initial studies on the cellular pharmacology of 2′,3′-dideoxyadenosine, an inhibitor of HTLV-III infectivity, Biochem. Pharmacol. 36:1765 (1987).

    Article  PubMed  CAS  Google Scholar 

  71. D. Kessel, unpublished results.

    Google Scholar 

  72. R. V. Joshi, D. Kessel, T. H. Corbett, and J. Zemlicka, Ynamines derived from nucleic acids bases: synthesis, reactivity and biological activity, J. Chem. Soc., Chem. Commun. No. 6:513 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zemlicka, J. (1993). Allenols Derived from Nucleic Acid Bases — A New Class of Anti-HIV Agents: Chemistry and Biological Activity. In: Chu, C.K., Baker, D.C. (eds) Nucleosides and Nucleotides as Antitumor and Antiviral Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2824-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2824-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6221-0

  • Online ISBN: 978-1-4615-2824-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics