Skip to main content

Lithiation Chemistry of Uridine Derivatives: Access to a New Anti-HIV-1 Lead

  • Chapter

Abstract

Direct lithiation of aromatic compounds started with the discovery of ortho-lithiation of anisole independently reported by two groups in 1939-1940.1,2 Numerous experimental results accumulated thereafter, together with the availability of different types of lithiating agents have led to a general understanding of the reaction mechanism.3 Since a number of functional groups have been recognized to have ortho-directing ability,4 and since lithiated species usually react with a wide range of electrophiles under mild conditions, lithiation strategy has become an efficient alternative to classical electrophilic aromatic substitution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gilman and R.L. Bebb, Relative reactivities of organometallic compounds. XX. Metalation, J. Am. Chem. Soc. 61: 109 (1939).

    Article  Google Scholar 

  2. G. Wittig and G. Fuhrmann, Über das Verhalten der halogenierten Anisole gegen Phenyl-lithium, Chem.Ber.73: 1197(1940).

    Google Scholar 

  3. H.G. Gschwend and H.R. Rodriguez, Heteroatom-facilitated lithiation, in: “Organic Reactions,” W.G. Dauben, ed., John Wiley and Sons, Inc., New York (1979).

    Google Scholar 

  4. P. Beak and V. Snieckus, Directed lithiation of aromatic tertiary amides: an evolving synthetic methodology for polysubstituted aromatics. Acc. Chem. Res.15: 306 (1982).

    Article  CAS  Google Scholar 

  5. T. Ueda, Synthesis and reaction of pyrimidine nucleosides, in: “Chemistry of Nucleosides and Nucleotides,” L.B. Townsend ed., Plenum Press, New York and London (1988)

    Google Scholar 

  6. T.L.V. Ulbricht, Syntheses with pyrimidine-lithium compounds, Tetrahedron 6: 225 (1959).

    Article  CAS  Google Scholar 

  7. Later, this reaction was reexamined by using 5-bromo-2′-deoxy-3′,5′-bis-O-(trimethylsilyl)uridine: L. Pichat, J. Godbillon, and M. Herbert, Lithiation par 1e n-butyllithium de bromo-5 uracile nucleosides silylés. Préparation de méthyl (14C-5) et méthyl (14C-6) uridine, de désoxy-2′-éthyl (14C-5) uridine et désoxy-2′éthyl (14C-6) uridine, Bull. Soc. Chim. Fr. 2712 (1973).

    Google Scholar 

  8. L. Pichat, J. Godbillon, and M. Herbert, Lithiations directes par 1e n-butyllithium d’uracile et thymine nucléosides silylés. Méthylation de ces lithiens. Préparation de thymidine-(D-6), Bull. Soc. Chim. Fr. 2715 (1973).

    Google Scholar 

  9. For some reports dealing with halogen-lithium exchange reactions of pyrimidine nucleosides: a) R.F. Schinazi and W.H. Prusoff, Synthesis and properties of boron and silicon substituted uracil or 2′-deoxyuridine,Tetrahedron Lett. 4981 (1978). b)Idem. Synthesis of 5-(dihydroxyboryl)-2′-deoxyuridine and related boron-containing pyrimidines, J. Org. Chem. 50: 841 (1985). c) P.L. Coe, M.R. Harnden, A.S. Jones, S.A. Nobel, and R.T. Walker, Synthesis and antiviral properties of some 2′-deoxy-5-(fluoroalkenyl)uridines, J. Med. Chem. 25: 1329 (1982).

    Google Scholar 

  10. For a review on organometallic chemistry of nucleosides: D.E. Bergstrom, Organometallic intermediates in the synthesis of nucleoside analogs, Nucleosides Nucleotides 1: 1 (1982).

    Article  CAS  Google Scholar 

  11. H.Tanaka, I. Nasu, and T. Miyasaka, Regiospecific C-alkylation of uridine: a simple route to 6-alkyluridines, Tetrahedron Lett. 4755 (1979).

    Google Scholar 

  12. Formation of 6-isopropyl-2′,3′-O-isopropylideneuridine was also observed especially when this reaction was carried out on a large scale.

    Google Scholar 

  13. For an application of the LDA lithiation of 4: B. Wang, J.R. Kagel, T.S. Rao, and M.P. Mertes, A novel cyclization reaction of a C-6 substituted uridine analog: an entry to 5,6-dialkylated uridine derivatives, Tetrahedron Lett. 30: 7005 (1989).

    Article  CAS  Google Scholar 

  14. H. Tanaka, I. Nasu, H. Hayakawa, and T. Miyasaka, A facile and regiospecific preparation of 6-alkyl-uridines, Nucleic Acids Symp. Ser. 8: 33 (1980).

    Google Scholar 

  15. For examples: a) W.V. Curran and R.B. Angier, The synthesis of orotidine and its isomer, 3-ß-D-ribofuranosylorotic acid, and the methylation of orotic acid, J. Org. Chem. 31:201 (1966). b) T. Ueda and H. Tanaka, Synthesis of 2-thiouridine and 6-methyl-3-(ß-D-ribofuranosyl)-2-thiouracil, Chem. Pharm. Bull. 18: 1491 (1970). c) U. Niedballa and H. Vorbriiggen, A general synthesis of N-glycosides. II. Synthesis of 6-methyluridine, J. Org. Chem. 39: 3660 (1974).

    Article  CAS  Google Scholar 

  16. Improved condensation methods for the preparation of 6-methylcytidine and 6-methyluridine have been reported: a) M.W. Winkley and R.K. Robins, The synthesis of 6-methylcytidine, 6-methyluridine, and related 6-methylpyrimidine nucleosides, J. Org. Chem. 33: 2822 (1968). b) H. Vorbrüggen, U. Niedballa, K. Krolikiewicz, B. Bennua, and G. Höfle, On the mechanism of nucleoside synthesis, in: “Chemistry and Biology of Nucleosides and Nucleotides,” R.E. Harmon, R.K. Robins, and L.B. Townsend, eds., Academic Press, New York (1978).

    Article  PubMed  CAS  Google Scholar 

  17. H. Inoue and T. Ueda, Synthesis of 6-cyano-and 5-cyano-uridines and their derivatives, Chem. Pharm. Bull. 26: 2657 (1978).

    Article  CAS  Google Scholar 

  18. A. Rosenthal and R.H. Dodd, Synthesis of 6-substituted uridines. Synthesis of (R or S)-6-(3-amino-2-carboxypropyl)uridine, Carbohydr. Res. 85: 15 (1980).

    Article  CAS  Google Scholar 

  19. Photochemical addition of nucleophilic α-hydroxyalkyl radicals has been used for the synthesis of 6-alkyluridines: J.-L. Fourrey, G. Henry, and P. Jouin, New synthesis of 5,6-cyclothymine-and 6-alkyluracil-1-N-ß-D-ribosides, Tetrahedron Lett. 951 (1979).

    Google Scholar 

  20. a) H. Tanaka, H. Hayakawa, and T. Miyasaka, Synthesis of 6-aroyluridine from uridine via regiospecific lithiation, Chem. Pharm. Bull. 29: 3565 (1981). b) Idem, A general entry to 6-substituted uridines from uridine via regiospecific lithiation, Nucleic Acids Symp. Ser. 10: 1 (1981). c) Idem, “Umpolung” of reactivity at the C-6 position of uridine: a simple and general method for 6-substituted uridines, Tetrahedron 38: 2635 (1982).

    Article  CAS  Google Scholar 

  21. For the preparation and LDA lithiation of 5′-O-TBDMS derivative of 5: H. Tanaka, H. Hayakawa, S. Shibata, K. Haraguchi, T. Miyasaka, and K. Hirota, Synthesis of 6-methyluridine via palladium-catalyzed cross-coupling between a 6-iodouridine derivative and tetramethylstannane, Nucleosides Nucleotides, 11:319(1982).

    Google Scholar 

  22. For an application of the LDA lithiation of 5: Y. Yamamoto, T. Seko, F.G. Rong, and H. Nemoto, Boron-10 carriers for NCT. A new synthetic method via condensation with aldehydes having boronic moiety, Tetrahedron Lett. 30: 7191 (1989).

    Article  CAS  Google Scholar 

  23. H. Tanaka, H. Hayakawa, and T. Miyasaka, unpublished result.

    Google Scholar 

  24. For an improved synthesis of 6-methyluridine by the use of 13: see reference 21.

    Google Scholar 

  25. a) H. Ikehira, T. Matsuura, and I. Saito, Photochemistry of 6-halo-and 5,6-dihalouracils. A simple synthesis of fluorescent uracil derivatives, Tetrahedron Lett. 26: 1743 (1985). b) K. Satoh, H. Tanaka, A. Andoh, and T. Miyasaka, Photochemical synthesis of 6-aryluridines, Nucleosides Nucleotides 5: 461 (1986).

    Article  CAS  Google Scholar 

  26. H. Tanaka, K. Haraguchi, Y. Koizumi, M. Fukui, and T. Miyasaka, Synthesis of 6-alkynylated uridines, Can. J. Chem. 64: 1560 (1986).

    Article  CAS  Google Scholar 

  27. H. Tanaka, S. Iijima, A. Matsuda, H. Hayakawa, T. Miyasaka, and T. Ueda, The reaction of 6-phenylthiouridine with sulfur nucleophiles: a simple and regiospecific preparation of 6-alkylthiouridines and 6-alkylthiouridylic acids, Chem. Pharm. Bull. 31: 1222 (1983).

    Article  CAS  Google Scholar 

  28. For the synthesis of 6-azidouridine from 13 and its photochemical reaction: a) H. Tanaka, H. Hayakawa, K. Haraguchi, and T. Miyasaka, Introduction of an azido group to the C-6 position of uridine by the use of a 6-iodouridine derivative, Nucleosides Nucleotides 4: 607 (1985). b) T. Miyasaka, H. Tanaka, K. Satoh, M. Imahashi, K. Yamaguchi, and Y. Iitaka, Photochemical intramolecular nitrene insertion of 6-azidouridine derivatives, J. Heterocycl. Chem. 24: 873 (1987).

    Article  CAS  Google Scholar 

  29. a) A.M. Kapuler, C. Monny, and A.M. Michelson, The relationship of mono-and polynucleotide conformation to catalysis by polynucleotide phosphorylase, Biochim. Biophys. Acta 217: 18 (1970). b) M.P. Schweizer, J.T. Witkowski, and R.K. Robins, Nuclear magnetic resonance determination of syn and anti conformations in pyrimidine nucleosides, J. Am. Chem. Soc. 93: 277 (1971).

    Article  PubMed  CAS  Google Scholar 

  30. H. Tanaka, A. Matsuda, S. Iijima, H. Hayakawa, and T. Miyasaka, Synthesis and biological activities of 5-substituted 6-phenylthio and 6-iodouridines, a new class of antileukemic nucleosides, Chem. Pharm. Bull. 31: 2164 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. An application of LDA lithiation for an attempted preparation of 5-fluoro-6-vinyluracil has been reported: G.-J. Koomen, H. Wolschrijn, J.B.M. van Rhijn, M.J. Wanner, and U.K. Pandit, Synthesis of 5-fluoro-3-(2-tetrahydrofuryl)-6-vinyluracil. Design of a 5-FU-derivative with extended conjugation, Heterocycles 24: 939(1986).

    Article  CAS  Google Scholar 

  32. Synthesis of 18 based on the LDA lithiation of 5 has been reported: H. Ikehira, T. Matsuura, and I. Saito, Synthesis and reaction of 6-trialkylsilyl substituted uracils and uridines, Tetrahedron Lett. 25: 3325 (1984).

    Article  CAS  Google Scholar 

  33. Practically no lithiation occurred by the use of LDA. The use of BuLi gave a complex mixture of products from which a small amount of 6-butyl derivative was isolated.

    Google Scholar 

  34. a) H. Tanaka, H. Hayakawa, K. Obi, and T. Miyasaka, Desulfurizative stannylation of uracil derivatives, Tetrahedron Lett. 26: 6229 (1985). b) Idem, Synthetic route to 5-substituted undines via a new type of desulfurizative stannylation, Tetrahedron 42: 4187 (1986).

    Article  CAS  Google Scholar 

  35. Just after our preliminary communication (reference 34a) was published, homolytic stannylation of vinylsulfones was reported, and an electron transfer mechanism is proposed for the reaction: Y. Watanabe, Y. Ueno, T. Araki, T. Endo, and M. Okawara, A novel homolytic substitution on vinylic carbon. A new route to vinyl stannane, Tetrahedron Lett. 27: 215 (1986).

    Article  CAS  Google Scholar 

  36. H. Hayakawa, H. Tanaka, and T. Miyasaka, A novel and regiospecific route to 5-acyluridines via an amide α-anion derived from 5,6-dihydrouridine, Chem. Pharm. Bull. 30: 4589 (1982).

    Article  CAS  Google Scholar 

  37. S. Hanessian, J. Kloss, and T. Sugawara, StereocontroUed access to the octosyl acids: total synthesis of octosyl acid A, J. Am. Chem. Soc. 108: 2758 (1986).

    Article  CAS  Google Scholar 

  38. W. Dumont, P. Bayet, and A. Krief, Cleavage of selenium compounds by butyllithium. A new, regiospecific, allyl alcohol synthon, Angew. Chem. Int. Ed. Engl. 13: 804 (1974).

    Article  Google Scholar 

  39. H. Hayakawa, H. Tanaka, and T. Miyasaka, Lithiation of 5,6-dihydrouridine: a new route to 5-substituted uridines, Tetrahedron 41:1675 (1985).

    Article  CAS  Google Scholar 

  40. H. Tanaka, H. Hayakawa, S. Iijima, K. Haraguchi, and T. Miyasaka, Lithiation of 3′,5′-O-(tetraisopropyl-disiloxan-l,3-diyl)-2′-deoxyuridine: synthesis of 6-substituted 2′-deoxyuridines, Tetrahedron 41: 861 (1985).

    Article  CAS  Google Scholar 

  41. H. Hayakawa, H. Tanaka, Y. Maruyama, and T. Miyasaka, Regioselectivity in the lithiation of uridine. Effect of the sugar protecting groups, Chem. Lett. 1401 (1985).

    Google Scholar 

  42. J.A. Rabi and J J. Fox, Facile base-catalyzed hydrogen isotope labeling at position 6 of pyrimidine nucleosides, J. Am. Chem. Soc.95: 1628 (1973).

    Article  PubMed  CAS  Google Scholar 

  43. H. Hayakawa, H. Tanaka, K. Obi, M. Itoh, and T. Miyasaka, A simple and general entry to 5-substituted uridines based on the regioselective lithiation controlled by a protecting group in the sugar moiety, Tetrahedron Lett. 28: 87 (1987).

    Article  CAS  Google Scholar 

  44. For an application of this method: B. Nawrot and A. Malkiewicz, The t RNA “wobble position” uridines. III. The synthesis of 5-[S-methoxycarbonyKhydroxyJmethyl]uridine and its 2-thio analogue, Nucleosides Nucleotides 8: 1499 (1989).

    Article  CAS  Google Scholar 

  45. For an application of this method to the C-5 lithiation of 2′-deoxyuridine: R.W. Armstrong, S. Gupta, and F. Whelihan, Synthesis of 5-substituted nucleosides via the regioselective lithiation of 2′-deoxy-uridine, Tetrahedron Lett. 30: 2057 (1989).

    Article  CAS  Google Scholar 

  46. For a review: C.K. Chu and S J. Cutler, Chemistry and antiviral activities of acyclonucleosides, J. Heterocycl. Chem. 23: 289 (1986).

    Article  CAS  Google Scholar 

  47. T. Miyasaka, H. Tanaka, M. Baba, H. Hayakawa, R.T. Walker, J. Balzarini, and E. De Clercq, A novel lead for specific anti-HIV-1 agents: l-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine, J. Med. Chem. 32: 2507 (1989).

    Article  PubMed  CAS  Google Scholar 

  48. H. Tanaka, T. Miyasaka, K. Sekiya, H. Takashima, M. Ubasawa, I. Nitta, M. Baba, R.T. Walker, and E. De Clercq, Synthesis of some analogues of l-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) which have different types of acyclic structures, Nucleosides Nucleotides 11:447 (1992).

    Article  CAS  Google Scholar 

  49. M. Baba, H. Tanaka, E. De Clercq, R. Pauwels, J. Balzarini, D. Schols, H. Nakashima, C.-F. Pemo, R.T. Walker, and T. Miyasaka, Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative, Biochem. Biophys. Res. Commun. 165: 1375 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. a) R. Pauwels, K. Andries, J. Desmyter, D. Schols, M.J. Kukla, HJ. Breslin, A. Raeymaekers, J. Van Gelder, R. Woestenborghs, J. Heykants, K. Schellekens, M.A.C. Janssen, E. De Clercq, and P.A.J. Janssen, Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TBO derivatives, Nature 343: 470 (1990). b) M.J. Kukla, HJ. Breslin, R. Pauwels, C.L. Fedde, M. Miranda, M.K. Scott, R.G. Sherrill, A. Raeymaekers, J. Van Gelder, K. Andries, M.A.C. Janssen, E. De Clercq, and P.AJ. Janssen, Synthesis and anti-HIV-1 activity of 4,5,6,7-tetrahydro-5-methyl-imidazo[4,5,1-jk][l,4]benzodiazepin-2(lH)-one (TIBO) derivatives, J. Med. Chem. 34: 746 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. V.J. Merluzzi, K.D. Hargrave, M. Labadia, K. Grozinger, M. Skoog, J.C. Wu, C.-K. Shin, K. Eckner, S. Hattox, J. Adams, A.S. Rosenthal, R. Faanes, R.J. Eckner, R.A. Koup, and J.L. Sullivan, Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor, Science 250: 1411 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. M.E. Goldman, J.A. O’B rien, T.L. Ruffing, A.M. Stern, S.L. Gaul, W.S. Saari, J.S. Wai, J. Hoffman, C.S. Rooney, J.C. Quintero, W.A. Schleif, E.A. Emini, and J.H. Nunberg, HIV-1 specific pyridinone RT inhibitors: preclinical biological characterization of two investigational new drugs, Abstract of 7th International Conference on AIDS, TU.A. 67 (1991).

    Google Scholar 

  53. H. Tanaka, M. Baba, H. Hayakawa, T. Sakamaki, T. Miyasaka, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, S. Shigeta, R.T. Walker, J. Balzarini, and E. De Clercq, A new class of HIV-1 specific 6-substituted acyclouridine derivatives: synthesis and anti-HIV-1 activity of 5-or 6-substituted analogues of l-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), J. Med. Chem. 34: 349 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. H. Tanaka, H. Takashima, M. Ubasawa, K. Sekiya, I. Nitta, M. Baba, S. Shigeta, R.T. Walker, E. De Clercq, and T. Miyasaka, Structure-activity relationships of l-[(2-hydroxyethoxy)methyl]-6-(phenyl-thio)thymine analogues: effect of substitutions at the C-6 phenyl ring and at the C-5 position on anti-HIV-1 activity, J. Med. Chem. 35: 337 (1992).

    Article  PubMed  CAS  Google Scholar 

  55. H. Tanaka, M. Baba, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, S. Shigeta, R.T. Walker, E. De Clercq, and T. Miyasaka, Synthesis and anti-HIV activity of 2-, 3-, and 4-substituted analogues of l-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), J. Med. Chem. 34: 1394 (1991).

    Article  PubMed  CAS  Google Scholar 

  56. M. Shimizu, H. Tanaka, H. Hayakawa, and T. Miyasaka, Dynamic aspects in the LDA lithiation of arabinofuranosyl derivative of 4-ethoxy-2-pyrimidinone: regioselective entry to both C-5 and C-6 substitutions, Tetrahedron Lett. 31: 1295 (1990).

    Article  CAS  Google Scholar 

  57. C.B. Reese and A. Ubasawa, Reaction between l-arenesulphonyl-3-nitro-l,2,4-triazoles and nucleoside base residues. Elucidation of the nature of side-reactions during oligonucleotide synthesis, Tetrahedron Lett. 21: 2265 (1980).

    Article  CAS  Google Scholar 

  58. For a bibliography: R.J. Remy and J.A. Secrist III, Acyclic nucleosides other than Acyclovir as potential antiviral agents, Nucleosides Nucleotides 4: 411 (1985).

    Article  CAS  Google Scholar 

  59. J.A. Fyfe, P.M. Keller, P.A. Furman, R.L. Miller, and G.B. Elion, Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine, J. Biol. Chem. 253: 8721 (1978).

    PubMed  CAS  Google Scholar 

  60. H. Tanaka, M. Baba, S. Saito, T. Miyasaka, H. Takashima, K. Sekiya, M. Ubasawa, I. Nitta, R.T. Walker, H. Nakashima, and E. De Clercq, Specific anti-HIV-1 “acyclonucleosides” which cannot be phosphorylated: synthesis of some deoxy analogues of l-[(2-hydroxyethoxy)metnyl]-6-(phenylthio)-thymine, J. Med. Chem. 34: 1508 (1991).

    Article  PubMed  CAS  Google Scholar 

  61. H. Tanaka, H. Takashima, M. Ubasawa, K. Sekiya, M. Baba, S. Shigeta, R.T. Walker, E. De Clercq, and T. Miyasaka, manuscript in preparation.

    Google Scholar 

  62. M. Baba, E. De Clercq, H. Tanaka, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, K. Umezu, H. Nakashima, S. Mori, S. Shigeta, R.T. Walker, and T. Miyasaka, Potent and selective inhibition of human immunodeficiency virus type 1 (HIV-1) by 5-ethyl-6-phenylthiouracil derivatives through their interaction with the HIV-1 reverse transcriptase, Proc. Natl. Acad. Sci. U.SA. 88: 2356 (1991).

    Article  CAS  Google Scholar 

  63. M. Baba, E. De Clercq, H. Tanaka, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, K. Umezu, R.T. Walker, S. Mori, M. Ito, S. Shigeta, and T. Miyasaka, Hihgly potent and selective inhibition of human immunodeficiency virus type 1 by a novel series of 6-substituted acyclouridine derivatives, Mol. Pharmacol. 39: 805 (1991).

    PubMed  CAS  Google Scholar 

  64. M. Ito, M. Baba, S. Shigeta, E. De Clercq, R.T. Walker, H. Tanaka, and T. Miyasaka, Synergistic inhibition of human immunodeficiency virus type 1 (HIV-1) replication in vitro by l-[(2-hydroxy-ethoxy)methyl]-6-(phenylthio)thymine (HEPT) and recombinant alpha interferon, Antiviral Res. 15: 323 (1991).

    Article  PubMed  CAS  Google Scholar 

  65. M. Baba, M. Ito, S. Shigeta, H. Tanaka, T. Miyasaka, M. Ubasawa, K. Umezu, R.T. Walker, and E. De Clercq, Synergistic inhibition of human immunodeficiency virus type 1 replication by 5-ethyl-l-ethoxymethyl-6-(phenylthio)uracil (E-EPU) and azidothymidine in vitro, Antimicrob. Agents Chemother. 35: 1430 (1991).

    Article  PubMed  CAS  Google Scholar 

  66. K. Umezu, M. Tsurufuji, S. Yuasa, N. Tsutsui, S. Yabuuchi, and Y. Ikeda, No toxic effects of a new anti-HIV-1 agent 6-substituted scyclouridine derivative on murine bone marrow cell growth, Abstracts of 7th International Conference on AIDS, W.A. 1010 (1991).

    Google Scholar 

  67. For a preliminary pharmacokinetics of certain HEPT analogues: M. Baba, E. De Clercq, S. Iida, H. Tanaka, I. Nitta, M. Ubasawa, H. Takashima, K. Sekiya, K. Umezu, H. Nakashima, S. Shigeta, R.T. Walker, and T. Miyasaka, Anti-human immunodeficiency virus type 1 activities and pharmacokinetics of novel 6-substituted acyclouridine derivatives, Antimicrob. Agents Chemother. 34: 2358 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanaka, H., Hayakawa, H., Miyasaka, T. (1993). Lithiation Chemistry of Uridine Derivatives: Access to a New Anti-HIV-1 Lead. In: Chu, C.K., Baker, D.C. (eds) Nucleosides and Nucleotides as Antitumor and Antiviral Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2824-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2824-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6221-0

  • Online ISBN: 978-1-4615-2824-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics