Skip to main content

Crystal Structures and Molecular Conformations of Anti-HIV Nucleosides

  • Chapter
Nucleosides and Nucleotides as Antitumor and Antiviral Agents

Abstract

Since the discovery of 3′-azido-3′-deoxythymidine (AZT) as the first drug for the treatment of AIDS, considerable efforts have been made to develop new nucleoside analogues that would be more active, less toxic inhibitors of the HIV-1 reverse transcriptase. Many novel compounds have been synthesized and tested, with only one general criterion for selection: the absence of a 3′-hydroxy 1 group so that the triphosphate nucleotide can inhibit HIV-1 reverse transcriptase by acting as a chain terminator. The molecular structures and conformations of many of these compounds have been examined in efforts to determine if structural or conformational features of the molecules can be correlated with activity.11-33 However, the diversity of compounds that show at least some activity and the fact that apparently very similar compounds can have extremely different activities indicate that identification of a single or a few structural parameters that would be required for activity is unlikely. The variations in activity are at least partially caused by the presence of several alternative metabolic pathways for the phosphorylation of the nucleoside to generate the active triphosphate nucleotide.2 This limits the utility of the study of the nucleoside conformation in analyzing the interaction of the nucleotide with reverse transcriptase. However, it may be possible to determine conditions required for efficient phosphorylation of the nucleoside. An additional factor complicating the development of structure-activity relationships is the inherent conformational flexibility of the nucleoside.34 For most nucleosides, several low-energy conformations can be identified and are accessible over low barriers to rotation. This precludes conclusions from the crystal structure determination of a single nucleoside but requires analysis of structural and conformational properties of a large group of related compounds with different activities. Most studies have focused on the modification of the deoxyribose unit rather than comparison of compounds with different bases for three reasons: (1) certain modification of the deoxyribose ring has been associated with high activity; (2) the conformation of the furanose ring determines the accessibility of the O5′-hydroxyl group; and, (3) nucleosides with different bases are frequently phosphorylated by different kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Mitsuya, R. Yarchoan, R. Kageyama, and S. Broder, Targeted therapy of human immunodeficiency virus-related disease, FASEB J., 5:2369 (1991).

    PubMed  CAS  Google Scholar 

  2. R.F. Schinazi, J.R. Mead, and P.M. Feorino, Insights into HIV chemotherapy, AIDS Res. Human Retroviruses, 8:963 (1992).

    Article  CAS  Google Scholar 

  3. M. Nasr, C. Litterst and J. McGowan, Computer-assisted structure-activity correlations of dideoxynucleoside analogues as potential anti-HTV drugs, J. Antiviral Res., 14:125 (1990).

    Article  CAS  Google Scholar 

  4. H. Mitsuya, R. Yarchoan and S. Broder, Molecular targets for AIDS therapy, Science, 249:1533 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. C.K. Chu, R.F. Schinazi, B.H. Arnold, D.L. Cannon, B. Doboszewski, V.B. Bhadti, and Z.P. Gu, Comparative activity of 2′,3′-saturated and unsaturated pyrimidine and purine nucleosides against human immunodeficiency virus type 1 in peripheral blood mononuclear cells, Biochem. Pharmacol., 37:3543 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. C.K. Chu, R.F. Schinazi, M.K. Ahn, G.V. Ullas and Z.P. Gu, Structure-activity relationships of pyrimidine nucleosides as antiviral agents for human immunodeficiency virus type 1 in peripheral blood mononuclear cells, J. Med. Chem., 32:612 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. J. Balzarini, G.-J. Kang, M. Dalai, P. Herdewijn, E. De Clercq, S. Broder and D.G. Johns, The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2′,3′-didehydro-2′,3′-dideoxyribonucleosides: a comparison with their parental 2′,3′-dideoxyribonucleosides, Mol. Pharmacol., 32:162 (1987).

    PubMed  CAS  Google Scholar 

  8. T.-S. Lin, R.F. Schinazi and W.H. Prusoff, Potent and selective in vitro activity of 3′-deoxythymdine-2′-ene (3′-deoxy-2′,3′-didehydrothymidine) against human immunodeficiency virus, Biochem. Pharmacol., 36:2713 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. M.M. Mansuri, J.E. Starrett Jr., I. Ghazzouli, M.J.M. Hitchcock, R.Z. Sterzycki, V. Brankovan, T.-S. Lin, E.M. August, W.H. Prusoff, J.-P. Sommadossi and J.C. Martin, 1-(2,3-dideoxy-ß-D-glyceropent-2-enofuranosyl)thymine. A highly potent and selective anti-HIV agent, J. Med. Chem., 32:461 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. J. Balzarini, R. Pauwels, P. Herdewijn, E. De Clercq, D.A. Cooney, G.J. Kang, M. Dalai, D.G. Johns and S. Broder, Potent and selective anti-HTLV-III/LAV activity of 2′,3′-dideoxycytidine, the 2′,3′-unsaturated derivative of 2′,3′-dideoxycytidine, Biochem. Biophys. Res. Commun., 140:735 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. G.I. Birnbaum, T.-S. Lin and W.H. Prusoff, Unusual structural features of 2′,3′-dideoxycytidine, an inhibitor of the HIV (AIDS) virus, Biochem. Biophys. Res. Commun., 151:608(1988).

    Article  PubMed  CAS  Google Scholar 

  12. P. Van Roey, J.M. Salerno, C.K. Chu and R.F. Schinazi, Correlation between preferred sugar ring conformation and activity of nucleoside analogues against human immunodeficiency virus, Proc. Natl. Acad. Sci. USA, 86:3929 (1989).

    Article  PubMed  Google Scholar 

  13. P. Van Roey and C.K. Chu, unpublished.

    Google Scholar 

  14. C.K. Chu, V.S. Bhadti, B. Doboszewski, Z.P. Gu, Y. Kosugi, K.C. Pullaiah and P. Van Roey, General synthesis of 2′,3′-dideoxynucleosides and 2′,3′-didehydro-2′,3′-dideoxynucleosides, J. Org. Chem., 54:2217 (1989).

    Article  CAS  Google Scholar 

  15. P. Van Roey, J.M. Salerno, W.L. Duax, C.K. Chu M.K. Ahn and R.F. Schinazi, Solid-state conformation of anti-human immunodeficinecy virus type-1 agents: crystal structures of three 3′-azido-3′-deoxythymidine analogues, J. Am. Chem. Soc., 110:2277(1988).

    Article  Google Scholar 

  16. G.I. Birnbaum, J. Giziewicz, E.J. Gabe, T.-S. Lin and W.H. Prusoff, Structure and conformation of 3′-azido-3′-deoxythymidine (AZT), an inhibitor of the HIV (AIDS) virus, Can. J. Chem., 65:2135 (1988).

    Article  Google Scholar 

  17. A. Camerman, D. Mastropaolo, D. and N. Camerman, Azidothymidine: crystal structure and possible functional role of the azido group, Proc. Natl. Acad. Sci. USA, 84:8239 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. R. Parthasarathy and H. Kim, Conformation and sandwiching of bases by azido groups in the crystal structure of 3′-azido-3′-deoxythymidine (AZT), an antiviral agent that inhibits HIV reverse transcriptase, Biochem. Biophys. Res. Commun., 152:351 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. I. Dyer, J.N. Low, P. Tollin, H.R. Wilson and R.A. Howie, Structure of 3′-azido-3′-deoxythymidine, AZT, Acta Cryst. Ser. C, 44:767 (1988).

    Article  Google Scholar 

  20. G.V. Gurskaya, E.N. Tsapkina, N.V. Skaptsova, A.A. Kracvskii, S.V. Lindeman and Y.T. Struchkov, Dokl. Akad. Nauk SSSR, 291:854 (1986).

    CAS  Google Scholar 

  21. J.N. Low and R.A. Howie, Structure of 3-(3-azido-2,3-dideoxy-ß-D-erythro-pentofuranosyl)cytosine hydrogen choloride, Acta Cryst. Ser. C, 46:84 (1990).

    Article  Google Scholar 

  22. P. Van Roey and R.F. Schinazi, The crystal and molecular structure of 3′-fluoro-3′-deoxythymidine, a potent anti-HIV-1 nucleoside, Antiviral Chem. Chemother., 1:93(1990).

    Google Scholar 

  23. G.V. Gurskaya and E.N. Tsapkina, Dokl. Akad. Nauk. SSSR, 303:1378 (1988).

    CAS  Google Scholar 

  24. C.K. Chu, B. Doboszewski, W. Schmidt, G.V. Ullas and P. Van Roey, Synthesis of pyrimidine 3′-allyl-2′,3′-dideoxyribonucleosides by free-radical coupling, J. Org. Chem., 54:2767 (1989).

    Article  CAS  Google Scholar 

  25. P. Van Roey, E.W. Taylor, C.K. Chu, and R.F. Schinazi, Conformational analysis of 2′,3′-didehydro-2′,3′-dideoxypyrimidine nucleosides, J. Am. Chem. Soc., in press.

    Google Scholar 

  26. W.E. Harte Jr., J.E. Starrett Jr., J.C. Martin and M.M. Mansuri, Structural studies of the anti-HTV agent 2′,3′-didehydro-2′,3′-dideoxythymidine (D4T), Biochem. Biophys. Res. Comm., 175:298 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. G.I. Birnbaum, J. Giziewicz, T.-S. Lin, and W.H. Prusoff, Structural features of 2′,3′-dideoxy-2′,3′-didehydrocytidine, a potent inhibitor of the HIV (AIDS) virus, Nucleosides Nucleotides, 8:1259 (1989).

    Article  CAS  Google Scholar 

  28. P. Van Roey and C.K. Chu, The crystal and molecular structure of the complex of 2′,3′-didehydro-2′,3′-dideoxyguanosine with pyridine, Nucleosides Nucleotides, 11:1229 (1992).

    Article  Google Scholar 

  29. H.O. Kim, S.K. Ahn, A J. Alves, J.W. Beach, L.S. Jeong, B.G. Choi, P. Van Roey, R.F. Schinazi and C.K. Chu, Asymmetric synthesis of 1,3-dioxolane-pyrimidine nucleosides and their anti-HIV activity, J. Med. Chem., 35:1987 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. C.K. Chu, S.K. Ahn, H.O. Kim, J.W. Beach, A.J. Alves, L.S. Jeong, Q. Islam, P. Van Roey and R.F. Schinazi, Asymmetric synthesis of enantiomerically pure (-)-(1’R,4’R)-dioxolane-thymidine and its anti-HIV activity, Tetrahedron Lett., 32:3791 (1991).

    Article  CAS  Google Scholar 

  31. D.W. Norbeck, S. Spanton, S. Broder and H. Mitsuya, A new 2′,3′-dideoxynucleoside prototype with in vitro activity against HIV, Tetrahedron Lett., 30:6263 (1989).

    Article  CAS  Google Scholar 

  32. E.W. Taylor, P. Van Roey, R.F. Schinazi and C.K. Chu, A stereochemical rationale for the activity of anti-HIV nucleosides, Antiviral Chem. Chemother., 1:163 (1990).

    CAS  Google Scholar 

  33. P. Van Roey, E.W. Taylor, C.K. Chu and R.F. Schinazi, Correlation of molecular conformation and activity of reverse transcriptase inhibitors, Ann. N. Y. Acad. Sci., 616:29 (1990).

    Article  PubMed  Google Scholar 

  34. W. Saenger, “Principles of Nucleic Acid Structure”, Springer-Verlag, New York, (1984).

    Book  Google Scholar 

  35. L.H. Koole, S. Neidle, M.D. Crawford, A.A. Krayevski, G.V. Gurskaya, A. Sandstroem, J.-C. Wu, W. Tong and J. Chattopadhyaya, Comparative structural studies of [3.1.0]-fiised 2′,3′-modified ß-D-nucleosides by X-ray crystallography, NMR spectroscopy, and molecular mechanics calculations, J. Org. Chem., 56:6884(1991).

    Article  CAS  Google Scholar 

  36. V.E. Marquez, C.K.-H. Tseng, J.A. Kelley, H. Mitsuya, S. Broder, J.S. Roth and J.S. Driscoll, 2′,3′-dideoxy-2′-fluoro-ara-A. An acid-stable purine nucleoside active against human immunodeficiency virus (HIV), Biochem. Pharmacol., 36:2719 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. M. Sundaralingam, in: “Structure and Conformation of Nucleic Acid and Protein-Nucleic Acid interactions” M. Sundaralingam and S.T. Rao, eds. 487–536, University Park Press, Baltimore, MD (1975).

    Google Scholar 

  38. D. Pearlman and S.-H. Kim, Conformational studies of nucleic acids. II. The conformational energetics of commonly occuring nucleosides, J. Biomol. Ster. Dynam., 3:99 (1985).

    Article  CAS  Google Scholar 

  39. G.I. Birnbaum and D. Shugar, Biologically active nucleosides and nucleotides: conformational features and interactions with enzymes, in: “ Nucleic Acid Structure”, S. Neidle, ed., Part 3,1, VCH, New York (1987).

    Google Scholar 

  40. A.L. Spek, 1992 American Crystallographic Association Meeting, Pittsburgh, PA, Abstract J05 (1992).

    Google Scholar 

  41. W.K. Olson, How flexible is the furanose ring? II. An updated potential energy estimate, J. Am. Chem. Soc., 104:278 (1982).

    Article  CAS  Google Scholar 

  42. C.K. Johnson, ORTEP-II, Report ORNL-5138 (Oak Ridge Natl. Lab., Oak Ridge, TN) (1976).

    Google Scholar 

  43. J.W. Beach, L.S. Jeong, AJ. Alves, D. Pohl, H.O. Kim, C.-N. Chang, S.-L. Doong, R.F. Schinazi, Y.-C. Cheng and C.K. Chu, Synthesis of enantiomerically pure (2′R,5′S)-(-)-l-[2-(hydroxymethyl)oxothiolan-5-yl]cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV) J. Org. Chem., 57:2217 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Roey, P., Chu, C.K. (1993). Crystal Structures and Molecular Conformations of Anti-HIV Nucleosides. In: Chu, C.K., Baker, D.C. (eds) Nucleosides and Nucleotides as Antitumor and Antiviral Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2824-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2824-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6221-0

  • Online ISBN: 978-1-4615-2824-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics