Skip to main content

Stereocontrolled Routes for the Synthesis of Anti-HIV and Anti-HBV Nucleosides

  • Chapter
Nucleosides and Nucleotides as Antitumor and Antiviral Agents

Abstract

The discovery of the clinical usefulness of 2′-deoxy- and 2′,3′-dideoxy nucleoside analogues for the treatment of viral infections such as acquired immunodeficiency syndrome, hepatitis B virus, cytomegalovirus and herpes simplex, and for the treatment of cancer has lead to the development of synthetic methodologies for the total synthesis of these types of agents. The advantage of a total synthetic approach is the ability to synthesize nucleoside analogues in which the base or the sugar portion of the molecule is not of a natural type. It also circumvents the use of naturally occurring nucleosides as starting material, which, in some cases are not readily available in large quantities and /or are of high cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Aoyama. Stereoselective synthesis of anomers of 5-substituted 2′-deoxyuridines, Bull.Chem. Soc. Jpn. 60:2073(1987).

    Article  CAS  Google Scholar 

  2. C. Hildebrand, G. E. Wright. Sodium salt glycosylation in the synthesis of purine 2′-deoxyribonucleosides: Studies of isomer distribution. J. Org. Chem. 57:1808(1992).

    Article  CAS  Google Scholar 

  3. U. Niedballa, H. Vorbriiggen. A general synthesis of N-glycosides I. Synthesis of pyrimidine nucleosides, J. Org. Chem. 39:3654(1974).

    Article  PubMed  CAS  Google Scholar 

  4. C. K. Chu, J. W. Beach, G. V. Ullas, Y. Kosugi. An efficient total synthesis of 3′-azido 3′-deoxythymidine (AZT) and 3′-azido 2′, 3′-dideoxyuridine (AZDDU, CS-87) from D-mannitol. Tetrahedron Lett. 29:5349 (1988).

    Article  CAS  Google Scholar 

  5. M. Okabe, R.-C. Sun, S. Y.-K Tarn, L. J. Todaro, D. L. Coffen. Synthesis of the dideoxynucleosides ddC and CNT from glutamic acid, ribonolactone and pyrimidine bases. J. Org. Chem. 53:4780(1988).

    Article  CAS  Google Scholar 

  6. C. K. Chu, R. Raghavachari, J. W. Beach, Y. Kosugi, G. V. Ullas. A general synthetic method for 2′,3′-dideoxynucleosides: Total synthetic approach. Nucleosides Nucleotides 8:903(1989).

    Article  Google Scholar 

  7. C. K. Chu, G. V. Ullas, L. S. Jeong, S. K. Ahn, B. Doboszewski, Z. X. Lin, J. W. Beach, R. F. Schinazi. Synthesis and structure-activity relationships of 6-substituted 2′,3′-dideoxypurine nucleosides as potential anti-HIV agents. J. Med. Chem. 33:1553(1990).

    Article  PubMed  CAS  Google Scholar 

  8. a) C. K. Chu, J. R. Babu, J. W. Beach, S. K. Ahn, H.-Q. Huang, L. S. Jeong, S. J. Lee. A highly stereoselective glycosylation of 2-(phenylselenenyl) 2′,3 dideoxyribose derivative with thymine: Synthesis of 3′-dideoxythymidine and 3′-deoxy 2′,3′-didehydro thymidine. J. Org. Chem. 55:1418 (1990). b) C. K. Chu, J. W. Beach, J. R. Babu, L. S. Jeong, H. O. Kim, S. K.Ahn, Q. Islam, S. J. Lee, Y.-Q Chen. Stereoselective synthesis of 2′,3′-dideoxy and 2′,3′-didehydro, 2′,3′-dideoxy nucleosides, Nucleosides Nucleotides 10:423 (1991). c) J. W. Beach, H. O. Kim, L. S. Jeong, S. Nampalli, Q. Islam, S. K. Ahn, J. R. Babu, C. K. Chu. A highly stereoselective synthesis of anti-HIV 2′,3′-dideoxy and 2′,3′-didehydro 2′,3′-dideoxy nucleosides, J. Org. Chem. 57:3887 (1992).

    Article  CAS  Google Scholar 

  9. B. Belleau, D. Dixit, N. Nguyen-Ba, J.L. Kraus. Fifth International Conference on AIDS, Montreal, Canada, June 4-9, 1989, paper no. TCO1.

    Google Scholar 

  10. D. W. Norbeck, S. Spanton, S. Broder, H. Mitsuya. ((-l-[2ß,4ß)-2 hytroxymethyl-4-dioxolane thymine). A new 2′3′-dideoxy nucleoside prototype with in vitro activity against HIV. Tetrahedron Lett. 30:6263(1989).

    Article  CAS  Google Scholar 

  11. A. E. Knauf, R. M. Hann, C. S. Hudson. D-Mannosan <1,5>ß<1,6> or Levomannosan. J. Am. Chem. Soc. 63:1447 (1941).

    Article  CAS  Google Scholar 

  12. M. A. Zottola, R. Alonso, G. D. Vile, B. Fraser-Reid. A practical, efficient, large-scale synthesis of 1,6-anhydrohexopyranoses. J. Org. Chem. 54: 6123 (1989).

    Article  CAS  Google Scholar 

  13. C. K. Chu, S. K. Ahn, H. O. Kim, J. W. Beach, A. J. Alves, L. S. Jeong, Q. Islam, P. Van Roey, R. F. Schinazi. Asymmetric synthesis of enantiomerically pure (-) — (1′R, 4′R) — dioxolane thymine and its anti-HIV activity. Tetrahedron Lett. 32:3791(1991).

    Article  CAS  Google Scholar 

  14. M. T. Nunez, V. S. Martin. Efficient oxidation of phenyl group to carboxylic acids with rutherniun tetroxide. A simple synthesis of (R)-γ-caprolactam, the pheromone of Trogoderma granarium. J. Org. Chem. 55:1928 (1990).

    Article  CAS  Google Scholar 

  15. D. Dhavale, E. Taghavini, C. Trombini, A. Umani-Romchi. A novel synthetic equivalent of differentially protected tartaric aldehyde. A simple route to useful C-4 chiral synthesis. Tetrahedron Lett. 29:6123 (1988).

    Article  Google Scholar 

  16. H.O. Kim, S. K. Ahn, A. J. Alves, J. W. Beach, L. S. Jeong, B. G. Choi, P. Van Roey, R. F.Schinazi, C.K. Chu Asymmetric synthesis of 1,3-dioxolane pyrimidine nucleosides and their anti-HIV Activity. J. Med. Chem. 35:1987 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. C. K. Chu, J. W. Beach, L. S. Jeong, B. G. Choi, F. I Comer, A. J. Alves, R. F. Schinazi. Enantiomeric Synthesis of (+) BCH-189. [(+)-2S,5R)-l-[2-(Hydroxymethyl)-l,3-oxathiolane-5-yl) cytosine] from D-mannose and its anti-HIV activity. J. Org. Chem. 56:6503 (1991).

    Article  CAS  Google Scholar 

  18. L.S. Jeong, A. J. Alves, S. W. Carrigan, H. O. Kim, J. W. Beach, C. K. Chu. An Efficient synthesis of enantiomerically pure (+) (2S,5R)-l-[2-(hydroxymethyl)-l,3 oxathiolane-5-yl] cytosine [(+) BCH-189] from D-galactose. Tetrahedron Lett. 33: 595 (1992).

    Article  CAS  Google Scholar 

  19. a) M. Akagi, S. Tejima, M. Haga. Biochemical studies in thio sugars IV. Synthesis of l,6-anhydro-l,6-sulfide ß-D-glucopyranose (thiolevoglucosan) and 6-deoxy-6-mercapto-1-thio-D-glucose. Chem. Pharm. Bull. 11: 58 (1963). b) R. L. Whistler, P. A. Seib. Alkaline degradation of 6-thio derivatives of D-glucose and D-galactose. Carbohydr. Res. 2:93 (1966).

    Article  PubMed  CAS  Google Scholar 

  20. G. A. Kraus, M. J. Taschner. Model studies for the synthesis of quassinoids. Construction of the BCE ring system. J. Org. Chem. 45:1175(1980).

    Article  CAS  Google Scholar 

  21. H. C. Brown, N. Ravindran. An exceptionally rapid and selective deoxygenation of aliphatic sulfoxides to sulfides under mild conditions with a new reducing agent, dichloroborane. Synthesis 42 (1973).

    Google Scholar 

  22. E. J. Corey, G. Schmidt. Procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Lett. 379 (1979).

    Google Scholar 

  23. S.-L Doong, C.-H Tsai, R. F. Schinazi, D.C. Liotta, Y.-C. Cheng. Inhibition of the replication of hepatitis B Virus in vitro by 2′,3′ dideoxy-3′-thiacytidine and related analogues, Proc. Natl. Acad. Sci., USA 88:8495 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. L.M. Lerner, B. D. Kohn, P. Kohn. Preparation of nucleosides via isopropylidene sugar derivatives III. J. Org. Chem. 33:1780 (1968).

    Article  PubMed  CAS  Google Scholar 

  25. G. Andrews, T.C. Crawford, B.E. Bacon. Stereoselective, catalytic reduction of L-ascorbic Acid. A convent synthesis of L-gulono-l,4-lactone. J. Org. Chem. 46:7976 (1981).

    Article  Google Scholar 

  26. M. Ishedate, Y. I. Mai, Y. Hirasaka, K. Umemoto, A new action of ion-exchange resins on the lactone ring of some carbohydrates. Chem. Pharm. Bull. 13:173 (1965).

    Article  Google Scholar 

  27. M. E. Evans, F. W. Parrish. A simple synthesis of L-gulose. Carbohydr. Res.28: 359(1973).

    Article  CAS  Google Scholar 

  28. J. W. Beach, L. S. Jeong, A. J. Alves, D. Pohl, H. O. Kim, C.-N. Chang, S. L. Doong, R. F. Schinazi, Y.-C. Cheng, C. K. Chu. Synthesis of enantiomerically pure 2′R,5′S-(-)-l-[2-(Hydroxymethyl)-oxathiolane-5-yl] cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV). J. Org. Chem. 57:2217(1992).

    Article  CAS  Google Scholar 

  29. R. F. Schinazi, C. K. Chu, A. Peck, R. McMillan, R. Mathis, D. Cannon, L. S. Jeong, J. W. Beach, W. B. Choi, S. Yeola, D. C. Liotta. Activities of the four optical isomers of 2′,3′-dideoxy 3′ thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes. Antimicrob. Agents Chemother. 36:672(1992).

    Article  PubMed  CAS  Google Scholar 

  30. C. N. Chang, S.-L Doong, J. H. Zhou, J. W. Beach, L. S. Jeong, C. K. Chu, C. H. Tsa, Y.-C. Cheng. Deoxycytidine deaminase resistent stereoisomer is the active form of (±) 2′,3′-dideoxy 3′-thiacytidine in the inhibition of hepatitis B virus replication. J. Biol.Chem. 267:13938 (1992).

    PubMed  CAS  Google Scholar 

  31. L. C. Stewart, N. K. Richtmyer. Transformation of D-gulose to 1,6 anhydro ß-D-gulopyranose in acid solution. J. Am. Chem. Soc. 77:1021(1955).

    Article  CAS  Google Scholar 

  32. H. O. Kim, K. Shanmuganathan, S. Nampalli, A. J. Alves, L. S. Jeong, J. W. Beach, R. F. Schinazi, C. K. Chu. Synthesis of 1,3-dioxolane-purine nucleosides and their anti-HIV Activity. J. Med. Chem., in press, (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beach, J.W., Jeong, L.S., Kim, H.O., Nampalli, S., Shanmuganathan, K., Chu, C.K. (1993). Stereocontrolled Routes for the Synthesis of Anti-HIV and Anti-HBV Nucleosides. In: Chu, C.K., Baker, D.C. (eds) Nucleosides and Nucleotides as Antitumor and Antiviral Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2824-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2824-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6221-0

  • Online ISBN: 978-1-4615-2824-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics