Structure-Activity Correlations of 2′,3′-Dideoxy- and 2′,3′-Didehydro-2′,3′-Dideoxypyrimidine Nucleosides as Potential Anti-HIV Drugs

  • Mohamed Nasr
  • Steven R. Turk


The first compound approved for the clinical treatment of human immunodeficiency virus (HIV) was the nucleoside analog 3′-azido-3′-deoxythymidine (AZT; zidovudine).1 Discovery of its antiviral activity prompted extensive evaluation of other nucleosides for anti-HIV efficacy and to date 2′,3′-dideoxyinosine (ddl; didanosine) and 2′,3′-dideoxy-cytidine (ddC; zalcitabine) additionally have been approved on a limited basis for clinical treatment of this virus. These nucleosides share a common mode of action, namely phosphorylation to the corresponding 5′-triphosphates which act as inhibitors of the virus-encoded reverse transcriptase.2.3 Substantial effort also has been directed towards developing non-nucleoside drugs (e.g. protease inhibitors, tat antagonists) which inhibit viral targets other than reverse transcriptase.4 The pursuit of more effective nucleoside analogs nonetheless remains an area of high interest to many investigators. This review provides detailed structure-activity data for two classes of nucleosides, the 2′,3′-dideoxy-and 2′,3′-didehydro-2′,3′-dideoxypyrimidine nucleosides, in the hopes it will prove useful to investigators in identifying new synthetic target molecules while avoiding unnecessary duplication of previous synthetic efforts.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Antiviral Activity Purine Nucleoside Azido Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Mitsuya, K.J. Weinhold, P.A. Furman, M.H. St. Clair, S. Nusinoff Lehrman, R.C. Gallo, D. Bolognesi, D.W. Barry, and S. Broder, 3′-Azido-3′-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro, Proc. Natl. Acad. Sci. USA 82:7096 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    P.A Furman, J.A. Fyfe, M. H. St. Clair, K. Weinhold, J.L. Rideout, G.A. Freeman, S. Nusinoff Lehrman, D.P. Bolognesi, S. Broder, H. Mitsuya, and D.W. Barry, Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase, Proc. Natl. Acad. Sci. USA 83:8333 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    M.C. Stanes and Y.C. Cheng, Inhibition of human immunodeficiency virus reverse transcriptase by 2′,3′-dideoxynucleoside triphosphates: Template dependence, and combination with phosphono-formate, Virus Genes 2:241 (1988).CrossRefGoogle Scholar
  4. 4.
    K.J. Connolly and S.M. Hammer, Antiretroviral therapy: Strategies beyond single-Agent reverse transcriptase inhibition, Antimicrob. Agents Chemother. 36:509 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Nasr, C. Litterst, and J. McGowan, Computer-assisted structure-activity correlations of dideoxy-nucleoside analogs as potential anti-HIV drugs, Antiviral Res. 14:125(1990).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Nasr, J. Cradock, and M.I. Johnston, Computer-assisted structure-activity correlations of halo-dideoxynucleoside analogs as potential anti-HIV drugs, AIDS Res. Human Retroviruses 8:135 (1992).CrossRefGoogle Scholar
  7. 7.
    C. Génu-Dellac, G. Gosselin, F. Puech, J.-C. Henry, A.-M. Aubertin, G. Obert, A. Kirn, and J.-L. Imbach, Systematic synthesis and antiviral evaluation of α-L-arabinofuranosyl and 2′-deoxy-α-L-erythro-pentofuranosyl nucleosides of the five narurallly occurring nucleic acid bases, Nucleosides & Nucleotides 10:1345 (1991).CrossRefGoogle Scholar
  8. 8.
    C. Génu-Dellac, G. Gosselin, A.-M. Aubertin, G. Obert, A. Kirn, and J.-L. Imbach, 3′-Substituted thymine α-L-nucleoside derivatives as potential antiviral agents: Synthesis and biological evaluation, Antiviral Chem. Chemother. 2:83(1991).Google Scholar
  9. 9.
    M.-J. Camarasa, A. Diaz-Ortiz, A. Calvo-Mateo, F.G. De las Heras, J. Balzarini, and E. De Clercq, Synthesis and antiviral activity of 3′-C-cyano-3′-deoxynucleosides, J. Med. Chem. 32:1732(1989).PubMedCrossRefGoogle Scholar
  10. 10.
    T.-S. Lin, J.-Y. Guo, R.F. Schinazi, C.K. Chu, J.-N. Xiang, and W.H. Prusoff, Synthesis and antiviral activity of various 3′-azido analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1, HTLV-III/LAV), J. Med. Chem. 31:336 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Van Aerschot, P. Herdewijn, J. Balzarini, R. Pauwels, and E. De Clercq, 3′-Fluoro-2′,3′-dideoxy-5-chlorouridine: Most selective anti-HIV-1 agent among a series of new 2′-and 3′-Fluor-inated 2′,3′-dideoxynucleoside analogues, J. Med. Chem. 32:1743(1989).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Mitsuya and S. Broder, Toward the rational design of antiretroviral therapy for human immunodeficiency virus (HIV) infection, in: “The Human Retroviruses,” R.C. Gallo and G. Jay, eds., Academic Press, San Diego (1991).Google Scholar
  13. 13.
    R.F. Schinazi, C.K. Chu, B.F. Eriksson, J.P. Sommadossi, K.J. Doshi, F.D. Boudinot, B. Oswald, and H.M. McClure, Antiretroviral activity, biochemistry, and pharmacokinetics of 3′-azido-2′,3′-dideoxy-5-methylcytidine, Ann. NY Acad. Sci. 616:385(1990).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Maag, R.M. Rydzewski, M.J. McRoberts, D. Crawford-Ruth, J.P.H. Verheyden, and E.J. Prisbe, Synthesis and anti-HIV activity of 4′-azido-and 4′-methoxynucleosides, J. Med. Chem. 35:1440(1992).PubMedCrossRefGoogle Scholar
  15. 15.
    C. O-Yang, W. Kurz, E.M. Eugui, M.J. McRoberts, J.P.H. Verheyden, L.J. Kurz, and K. A.M. Walker, 4′-Substituted nucleosides as inhibitors of HIV: An unusual oxetane derivative, Tetrahedron Lett. 33:41 (1992).CrossRefGoogle Scholar
  16. 16.
    C. O-Yang, H.Y. Wu, E.B. Fraser-Smith, and K.A.M. Walker, Synthesis of 4′-cyanothymidine and analogs as potent inhibitors of HIV, Tetrahedron Lett. 33:37 (1992).CrossRefGoogle Scholar
  17. 17.
    P. Herdewijn, J. Balzarini, E. Clercq, R. Pauwels, M. Baba, S. Broder, and H. Vanderhaege, 3′-Substituted 2′,3′-Dideoxynucleoside analogues as potential anti-HIV (HTLV-III/LAV) agents, J. Med. Chem. 30:1270(1987).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Balzarini, P. Herdewijn, R. Pauwels, S. Broder, and E. De Clercq, α,ß-and ß,γ-Methylene 5′-phosphonate derivatives of 3′-azido-2′,3′-dideoxythymidine-5′triphosphate, Biochem. Pharmacol. 37:2395 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    T.R. Webb, H. Mitsuya, and S. Broder, 1-(2,3-Anhydro-ß-D-lyxofuranosyl)cytosine derivatives as potential inhibitors of the human immunodeficiency virus, J. Med. Chem. 31:1475(1988).PubMedCrossRefGoogle Scholar
  20. 20.
    E. Palomino, B.R. Meltsner, D. Kessel, and J.P. Horwitz, Synthesis and in vitro evaluation of some modified 4-thiopyrimidine nucleosides for prevention or reversal of AIDS-associated neurological disorders, J. Med. Chem. 33:258(1990).PubMedCrossRefGoogle Scholar
  21. 21.
    T.-S. Lin, Z.-Y. Shen, E.M. August, V. Brankovan, H. Yang, I. Ghazzouli, and W.H. Prusoff, Synthesis and antiviral activity of several 2,5′-anhydro analogues of 3′-azido-3′-deoxythymidine, 3′-azido-2′,3′-dideoxyuridine, 3′-azido-2′,3′-dideoxy-5-halouridines, and 3′-deoxythymidine against human immunodeficiency virus and Rauscher-murine leukemia virus, J. Med. Chem. 32:1891(1989).PubMedCrossRefGoogle Scholar
  22. 22.
    M.M. Mansuri, J.A. Wos, and J.C. Martin, A short synthesis of 3′-(methylsulfinyl)-3′-deoxy-thymidine and related analogues, Nucleosides & Nucleotides 8:1463 (1989).CrossRefGoogle Scholar
  23. 23.
    R. Koshida, S. Cox, J. Harmenberg, G. Gilljam, and B. Wahren, Structure-activity relationships of fluorinated nucleoside analogs and their synergistic effect in combination with phosphonoformate against human immunodeficiency virus type 1, Antimicrob. Agents Chemother. 33:2083(1989).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Bazin, J. Chattopadhyaya, R. Dateman, A.-C. Ericson, G. Gilliam, N.G. Johansson, J. Hansen, R. Koshida, K. Moelling, B. Oberg, G. Remaud, G. Stening, L. Vrang, B. Wahren, and J.C. Wu, An analysis of the inhibition of replication of HIV and MuLV by some 3′-blocked pyrimidine analogs, Biochem. Pharmacol. 38:109(1989).PubMedCrossRefGoogle Scholar
  25. 25.
    K.A. Watanabe, K. Harada, J. Zeidler, J. Matulic-Adamic, K. Takahashi, W.-Y. Ren, L.-C. Cheng, J.J. Fox, T.-C. Chou, Q.-Y. Zhu, B. Polsky, J.W.M. Gold, and D. Armstrong, Synthesis and anti-HIV-1 activity of 2′-“up”-fluoro analogues of active anti-AIDS nucleosides 3′-azido-3′-deoxythymidine(AZT) and 2′,3′-dideoxycytidine(DDC), J. Med. Chem. 33:2145(1990).PubMedCrossRefGoogle Scholar
  26. 26.
    N.B. Tarussova, M.K. Kukhanova, A.A. Krayevsky, E.K. Karamov, V.V. Lukashov, G.B. Kornilayeva, M.A. Rodina, and G.A. Galegov, Inhibition of human immunodeficiency virus (HIV) production by 5′-hydrogenphosphonates of 3′-azido-2′,3′-dideoxynucleosides, Nucleosides & Nucleotides 10:351 (1991).CrossRefGoogle Scholar
  27. 27.
    P.F. Torrence, J.-E. Kenjo, K. Lesiak, J. Balzarini, and E. De Clercq, Aids dementia: Synthesis and properties of a derivative of 3′-azido-3′-deoxythymidine (AZT) that may become “locked” in the central nervous system, FEBS Lett. 234:135(1988).PubMedCrossRefGoogle Scholar
  28. 28.
    F. Puech, G. Gosselin, J. Balzarini, S.S. Good, L. Rideout, E. De Clercq, and J.-L. Imbach, Synthesis and biological evaluation of dinucleoside methylphosphonates of 3′-azido-3′-deoxy-thymidine and 2′,3′-dideoxycytidine, Antiviral Res. 14:11 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Balzarini, M. Baba, R. Pauwels, P. Herdewijn, and E. De Clercq, Anti-retrovirus activity of 3′-fluoro-and 3′-azido-substituted pyrimidine 2′,3′-dideoxynucleoside analogues, Biochem. Pharmacol. 37:2847 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    L. Jie, A. Van Aerschot, J. Balzarini, G. Janssen, R. Busson, J. Hoogmartens, E. De Clercq, and P. Herdewijn, 5′-O-Phosphonomethyl-2′,3′-dideoxynucleosides: Synthesis and anti-HIV activity, J. Med. Chem. 33:2481 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Wigerinck, A. Van Aerschot, G. Janssen, P. Claes, J. Balzarini, E. De Clercq, and P. Herdewijn, Synthesis and antiviral activity of 3′-heterocyclic substituted 3′-deoxythymidines, J. Med. Chem. 33:868(1990).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Hiebl, E. Zbiral, J. Balzarini, and E. De Clercq, Synthesis, antiretrovirus effects, and phosphorylation kinetics of 3′-isocyano-3′-deoxythymidine and 3′-isocyano-2′,3′-dideoxyuridine, J. Med. Chem. 33:845 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Herdewijn, J. Balzarini, M. Baba, R. Pauwels, A. Van Aerschot, G. Janssen, and E. De Clercq, Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides, J. Med. Chem. 31:2040(1988).PubMedCrossRefGoogle Scholar
  34. 34.
    M.J. Bamford, P.L. Coe, and R.T. Walker, Synthesis and antiviral activity of 3′-deoxy-3′-C-hydroxymethyl nucleosides, J. Med. Chem. 33:2494 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Van Aerschot, J. Balzarini, R. Pauwels, L. Kerremans, E. De Clercq, and P. Herdewijn, Influence of fluorination of the sugar moiety on the anti-HIV-1 activity of 2′,3′-dideoxy-nucleosides, Nucleosides & Nucleotides 8:1121 (1989).CrossRefGoogle Scholar
  36. 36.
    D.E. Bergstrom, A.W. Mott, E. De Clercq, J. Balzarini, and D.J. Swartling. 3′,3′-Difluoro-3′-deoxythymidine: Comparison of anti-HIV activity to 3′-fluoro-3′-deoxythymidine, J. Med. Chem. 35:3369 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    G.A. Freeman, J.L. Rideout, M.H. St. Clair, G.B. Roberts, and P.A. Sherman, Antiviral activity of 5′-modified analogs of AZT against HIV-1 and 2, Antiviral Res. 15(Suppl. 1):54 (1991).CrossRefGoogle Scholar
  38. 38.
    M.S. Motawia, E.B. Pedersen, and C.M. Nielsen, Synthesis of N-substituted 3′-amino-3′-deoxy-thymidines and their biological evaluation against HIV, Arch. Pharm. (Weinheim) 323: 971 (1990).CrossRefGoogle Scholar
  39. 39.
    S.K. Aggarwal, S.R. Gogu, S.R.S. Rangan, and K.C. Agrawal, Synthesis and biological evaluation of prodrugs of zidovudine, J. Med. Chem. 33:1505(1990).PubMedCrossRefGoogle Scholar
  40. 40.
    R.F. Schinazi, J.-P. Sommadossi, V. Saalmann, D.L. Cannon, M.-Y. Xie, G.C. Hart, G.A. Smith, and E.F. Hahn, Activities of 3′-azido-3′-deoxythymidine nucleotide dimers in primary lyphocytes infected with human immunodeficiency virus type I, Antimicrob. Agents Chemother. 34:1061 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    C.K. Chu, R.F. Schinazi, B.H. Arnold, D.L. Cannon, B. Doboszewski, V.B. Bhadti, and Z. Gu, Comparative activity of 2′,3′-saturated and unsaturated pyrimidine and purine nucleosides against human immunodeficiency virus type I in peripheral blood mononuclear cells, Biochem. Pharmacol. 37:3543 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    C.K. Chu, R.F. Schinazi, M.K. Ahn, G.V. Ullas, and Z.P. Gu, Structure-activity relationships of pyrimidine nucleosides as antiviral agents for human immunodeficiency virus type I in peripheral blood mononuclear cells, J. Med. Chem. 32:612(1989).PubMedCrossRefGoogle Scholar
  43. 43.
    J.A. Martin, D.J. Bushneil, I.B. Duncan, S.J. Dunsdon, M.J. Hall, P.J. Machin, J.H. Merrett, K.E.B. Parkes, N.A. Roberts, G.J. Thomas, S.A. Galpin, and D. Kinchington, Synthesis and antiviral activity of monofluoro and difluoro analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1), J. Med. Chem. 33:2137 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    J.A. Warshaw, and K.A. Watanabe, 2′-Azido-2′,3′-dideoxypyrimidine nucleosides. Synthesis and antiviral activity against human immunodeficiency virus, J. Med. Chem. 33:1663 (1990).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Hiebl, E. Zbiral, J. Balzarini, and E. De Clercq, Synthesis and antiretrovirus properties of 5′-isocyano-5′-deoxythmidine, 5′-isocyano-2′,5′-dideoxyuridine, 3′-azido-5′-isocyano-3′,5′-dideoxythymidine, and 3′-azido-5′-isocyano-2′,3′,5′-trideoxyuridine, J. Med. Chem. 34:1426 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    E. Matthes, C. Lehmann, M. von Janta-Lipinski, and D. Scholz, Inhibition of HIV-replication by 3′-fluoro-modified nucleosides with low cytotoxicity, Biochem. Biophys. Res. Commun.165:488 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    A.E.-S. Abdel-Megied, E.B. Pedersen, and C.M. Nielsen, Synthesis of 2′,3′-dideoxynucleosides from 5-alkoxymethyluracils, Monatsh. Chem. 122:59(1991).CrossRefGoogle Scholar
  48. 48.
    C.-H. Kim, V.E. Marquez, S. Broder, H. Mitsuya, and J.S. Driscoll, Potential anti-AIDS drugs. 2′,3′-Dideoxycytidine analogues, J. Med. Chem. 30:862(1987).PubMedCrossRefGoogle Scholar
  49. 49.
    R.Z. Sterzycki, I. Ghazzouli, V. Brankovan, J.C. Martin, and M.M. Mansuri, Synthesis and anti-HIV activity of several 2′-fluoro-containing pyrimidine nucleosides, J. Med. Chem. 33:2150 (1990).PubMedCrossRefGoogle Scholar
  50. 50.
    J.-T. Huang, L.-C. Chen, L. Wang, M.-H. Kim, J.A. Warshaw, D. Armstrong, Q.-Y. Zhu, T.-C. Chou, K.A. Watanabe, J. Matulic-Adamic, T.-L. Su, J.J. Fox, B. Polsky, P.A. Baron, J.W.M. Gold, W.D. Hardy, and E. Zuckerman, Fluorinated sugar analogues of potential anti-HIV-1 nucleosides, J. Med. Chem. 34:1640(1991).PubMedCrossRefGoogle Scholar
  51. 51.
    A. Van Aerschot, D. Everaert, J. Balzarini, K. Augustyns, L. Jie, G. Janssen, O. Peeters, N. Blaton, C. De Ranter, E. De Clercq, and P. Herdewijn, Synthesis and anti-HIV evaluation of 2′,3′-dideoxyribo-5-chlororpyrimidine analogues: Reduced toxicity of 5-chlorinated 2′,3′-dideoxy-nucleosides, J. Med. Chem. 33:1833(1990).PubMedCrossRefGoogle Scholar
  52. 52.
    J. Balzarini, A. Van Aerschot, P. Herdewijn, and E. De Clercq, 2′,3′-Didehydro-2′,3′-dideoxy-5-chlorocytidine is a selective anti-retrovirus agent, Biochem. Biophys. Res. Commun. 164:1190 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    M. Baba, R. Pauwels, P. Herdewijn, E. De Clercq, J. Desmyter, and M. Vandeputte, Both 2′,3′-dideoxythymidine and Its 2′,3′-unsaturated derivative (2′,3′-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro, Biochem. Biophys. Res. Commun. 142:128(1987).PubMedCrossRefGoogle Scholar
  54. 54.
    J. Balzarini, A. Van Aerschot, P. Herdewijn, and E. De Clercq, 5-Chloro-substituted derivatives of 2′,3′-didehydro-2′,3′-dideoxyuridine, 3′-fluoro-2′,3′-dideoxyuridine and 3′-azido-2′,3′-dideoxy-uridine as anti-HIV agents, Biochem. Pharmacol. 38:869 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Mohamed Nasr
    • 1
  • Steven R. Turk
    • 1
  1. 1.Division of AIDS, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations