Skip to main content

Electron Mobility in Delta-Doped Quantum Well Structures

  • Chapter
  • 234 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 307))

Abstract

Hall effect measurements of the mobility of electrons confined in doped GaAs/AlGaAs quantum wells indicate that the ionized impurity scattering of a quasi-two-dimensional electron gas immersed in the identical concentration of ionized impurities is greater than that of a bulk electron gas of the same density. This enhancement arises from fundamental differences between 2-D and 3-D scattering of charged carriers with ionized impurities. The enhanced scattering rate may be further increased by confining the dopant ions to a delta-like doping profile in the center of the well because of the further overlap of the electronic wavefunction with the impurities. Although electrons in center delta-doped AlGaAs/GaAs quantum wells have lower low-field mobilities than do electrons in uniformly doped quantum wells, at electric fields between 2 and 4 kV/cm the differential mobility in delta-doped quantum wells rises dramatically. This large increase in differential mobility may be a result of the heating of the electrons out of the symmetric ground state into the anti-symmetric first excited state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.B. Fowler, F.F. Fang, W.E. Howard, and P.J. Stiles, Phys. Rev. Lett. 16, 901–903 (1966).

    Article  Google Scholar 

  2. H.L. Störmer, R. Dingle, A.C. Gossard, W. Wiegmann, and M.D. Sturge, J. Vac. Sci. Technol. 16, 1517–1519 (1979).

    Article  Google Scholar 

  3. L. Pfeiffer, K.W. West, H.L. Störmer, and K.W. Baldwin, Appl. Phys. Lett. 55, 1888–1890 (1989).

    Article  Google Scholar 

  4. W.T. Masselink, T. Henderson, J. Klem, W.F. Kopp, and H. Morkoç, IEEE Trans. Electron Devices 33, 639–645 (1986).

    Article  Google Scholar 

  5. W.T. Masselink, N. Braslau, W.I. Wang, and S.L. Wright, Appl. Phys. Lett. 51, 1533–1535 (1987).

    Article  Google Scholar 

  6. W.T. Masselink, Semicond. Sci. Technol. 4, 503–512 (1989).

    Article  Google Scholar 

  7. M. Feng, C.L. Lau, V. Eu, and C. Ito, Appl. Phys. Lett. 57, 1233–1235 (1990).

    Article  Google Scholar 

  8. F. Stern and S. Das Sarma, Phys. Rev. B 30, 840–848 (1984).

    Article  Google Scholar 

  9. F.A. Riddoch and B.K. Ridley, J. Phys. C: Solid State Phys. 16, 6971–6982 (1983).

    Article  Google Scholar 

  10. B.K. Ridley, J. Phys. C: Solid State Phys. 17, 5357–5365 (1984).

    Article  Google Scholar 

  11. R.J. Haug, K. von Klitzing, and K. Ploog, Proceedings of 19th International Conference on the Physics of Semiconductors, Warsaw, 1988, edited by W. Zawadzki (Inst. of Physics, Polish Academy of Sciences, Warsaw, 1988 ), pp. 307–310.

    Google Scholar 

  12. S. Mori and T. Ando, J. Phys. Soc. Jpn. 48, 865–873 (1980).

    Article  Google Scholar 

  13. A. Gold, J. Phys. (Paris) Colloque C5, 255–258 (1987).

    Google Scholar 

  14. C.E.C. Wood, G. Metze, J. Berry, and L.F. Eastman, J. Appl. Phys. 51, 383–387 (1980).

    Article  Google Scholar 

  15. E.F. Schubert and K. Ploog, Jap. J. Appl. Phys. Lett. 24, L608–L610 (1985).

    Article  Google Scholar 

  16. E.F. Schubert, J.B. Stark, B. Ullrich, and J.E. Cunningham, Appl. Phys. Lett. 52, 1508–1510 (1988).

    Article  Google Scholar 

  17. E.F. Schubert, J.B. Stark, T.H. Chiu, and B. Tell, Appl. Phys. Lett. 53, 293–295 (1988).

    Article  Google Scholar 

  18. A. Zrenner, F. Koch, and K. Ploog, Proceedings of Int. Symp. GaAs and Related Compounds, Heraklion, Greece, 1987, edited by A. Christou and H.S. Rupprecht (Inst. of Physics Publishing Ltd., Bristol, 1988), pp. 171–174.

    Google Scholar 

  19. A. Zrenner, F. Koch, R.L. Williams, R.A. Stradling, K. Ploog, and G. Weimann, Semicond. Sci. Technol. 3, 1203–1209 (1988).

    Article  Google Scholar 

  20. J. Wagner, M. Ramsteiner, W. Stolz, M. Hauser, and K. Ploog, Appl. Phys. Lett. 55, 978–980 (1989).

    Article  Google Scholar 

  21. J.R. Meyer and F.J. Bartoli, Phys. Rev. B 36, 5989–6000 (1987).

    Article  Google Scholar 

  22. H. Sakaki, T. Noda, H. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934–1936 (1987).

    Article  Google Scholar 

  23. R. Gottinger, A. Gold, G. Abstreiter, G. Weimann, and W. Schlapp, Europhys. Lett. 6, 183–188 (1988).

    Article  Google Scholar 

  24. T. Ando, J. Phys. Soc. Jpn. 51, 3900–3907 (1982).

    Article  Google Scholar 

  25. P.J. Price, J. Vac. Sci. Technol. 19, 599–603 (1981).

    Article  Google Scholar 

  26. D. Chattopadhayay and H.J. Queisser, Rev. Mod. Phys. 53, 745–768 (1981).

    Article  Google Scholar 

  27. A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, Phys. Rev. B 40, 6442–6445 (1989).

    Article  Google Scholar 

  28. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437–672 (1982).

    Article  Google Scholar 

  29. M.V. Fischetti, IEEE Trans. Electron Devices 38, 634–649 (1991).

    Article  Google Scholar 

  30. W.T. Masselink and T.F. Kuech, J. Electronic Materials 18, 579–584 (1989).

    Article  Google Scholar 

  31. W.T. Masselink, Appl. Phys. Lett. 59, 694–696 (1991).

    Article  Google Scholar 

  32. W.T. Masselink, Proceedings of Int. Symp. GaAs and Related Compounds, Seattle, USA, 1991, edited by G.B. Stringfellow (Inst. of Physics Publishing Ltd., Bristol, 1992), pp. 425–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Masselink, W.T. (1993). Electron Mobility in Delta-Doped Quantum Well Structures. In: Balkan, N., Ridley, B.K., Vickers, A.J. (eds) Negative Differential Resistance and Instabilities in 2-D Semiconductors. NATO ASI Series, vol 307. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2822-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2822-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6220-3

  • Online ISBN: 978-1-4615-2822-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics