Light Emission and Domain Formation in Real-Space Transfer Devices

  • T. K. Higman
  • Jihong Chen
  • M. S. Hagedorn
  • R. T. Fayfield
Part of the NATO ASI Series book series (NSSB, volume 307)


Light emission from real-space transfer devices can be brought about by several mechanisms. For device application the most promising of these mechanisms is the injection of minority electrons across a semiconductor heterojunction into a p-type collecting layer. So far, problems associated with the growth of p-type collecting layers have hindered efforts in this area, resulting in inefficient light output. Our group has reported observing light emission caused by the real-space transfer of majority electrons into an n-type collecting layer. We propose a mechanism to account for this light which consists of hole creation by impact ionization of real-space transferred electrons. Microscopic observation of the spatial distribution of the light along the length and width of the channel (variations have been observed in both directions), along with its spectral distribution, gives insight into the mechanisms involved in high field domain formation in the channel of real-space transfer FETs and the contribution of high field domains to negative differential resistance. New device structures which incorporate a p-type collecting layer as the top layer of the device in order to decrease the problems associated with p-type doping in real-space transfer devices will also be discussed.


Collector Current Negative Differential Resistance Drain Voltage IEEE Electron Device Drain Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    H. Shtrikman, M. Heiblum, K. Seo, D. E. Galbi, and L. Osterling, J. Vac. Sci. Technol. B6:670(1988).Google Scholar
  2. 2).
    A. Kastalsky, S. Luryi, A. C. Gossard, and R. Hendel, IEEE Electron Device Lett. EDL-5:57(1984).Google Scholar
  3. 3).
    Piotr M. Mensz, Paul A. Garbinski, Alfred Y. Cho, Deborah L. Sivco, and Serge Luryi, Appl. Phys. Lett. 57:2558(1990).CrossRefGoogle Scholar
  4. 4).
    K. Brennan, T. Wang, and K. Hess, IEEE Electron Device Lett. EDL-6:199(1985).CrossRefGoogle Scholar
  5. 5).
    I. C. Kizilyalli and K. Hess, J. Appl. Phys. 65:2005(1989).CrossRefGoogle Scholar
  6. 6).
    Piotr M. Mensz, Serge Luryi, John C. Bean, and Conor J. Buescher, Appl. Phys. Lett. 56:2663(1990).CrossRefGoogle Scholar
  7. 7).
    S. Luryi, Appl. Phys. Lett. 58:1727(1991).CrossRefGoogle Scholar
  8. 8).
    A. Kastalsky, R. Bhat, W. K. Chan, and M. Koza, Solid-State Electronics 29:1073(1986).CrossRefGoogle Scholar
  9. 9).
    M. Mastrapasqua, F. Capasso, S. Luryi, A.L. Hutchinson, D.L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 60:2415(1992).CrossRefGoogle Scholar
  10. 10).
    M.R. Hueschen, N. Moll, and Alice Fischer-Colbrie, Appl. Phys. Lett. 57:386(1990).CrossRefGoogle Scholar
  11. 11).
    K. Hess, H. Morkoc, H. Shichijo, B.G. Streetman, Appl. Phys. Lett. 35:469(1979).CrossRefGoogle Scholar
  12. 12).
    M. Keever, K. Hess, and M. Ludovise, IEEE Electron Device Lett. EDL-3:297(1982).CrossRefGoogle Scholar
  13. 13).
    T.K. Higman, S.J. Manion, I.C. Kisilyalli, M.A. Emanuel, K. Hess, and J.J. Coleman, Phys. Rev. B 36:9381(1987).CrossRefGoogle Scholar
  14. 14).
    T.K. Higman, L.M. Miller, M.E. Favaro, M.A. Emanuel, K. Hess, and J.J. Coleman, Appl. Phys. Lett. 53:1623(1988).CrossRefGoogle Scholar
  15. 15).
    D. Arnold, K. Hess, T. Higman, J.J. Coleman, G.J. Iafrate, J. Appl. Phys. 66:1423(1989).CrossRefGoogle Scholar
  16. 16).
    Submitted to Superlattices and Microstructures.Google Scholar
  17. 17).
    A. Kastalsky, M. Milshtein, L.G. Shantharama, J. Harbison, and L. Florez, Appl. Phys. Lett. 54:2452(1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • T. K. Higman
    • 1
  • Jihong Chen
    • 1
  • M. S. Hagedorn
    • 1
  • R. T. Fayfield
    • 1
  1. 1.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations