Electronic Transport in Semiconductors at High Energies: Effects of the Energy Band Structure

  • Karl Hess
Part of the NATO ASI Series book series (NSSB, volume 307)

Abstract

A number of hot electron effects in semiconductors, related to device reliability, involve scattering and accelerations at very high energies and therefore are dominated by bandstructure effects. To describe these effects quantitatively it is necessary to go beyond the usual inclusion of non-parabolicity and to use a full bandstructure as calculated, for example, from the empirical pseudopotential method. Current Monte Carlo simulations of these effects develop in two major directions. Attempts are currently being made to avoid the uncertainties of a large number of deformation potential constants for the electron phonon interaction and to treat electron phonon interaction and bandstructure within a single framework. In addition efforts are continuing to include complex quantum effects such as collisional broadening and the intracollisional field effect. These developments are reviewed using the example of the theory of impact ionization as developed by Bude which is representative in many respects for general processes that exhibit a high energy threshold.

Keywords

Dioxide GaAs Auger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monte Carlo Device Simulation: Full Band and Beyond, edited by K. Hess, Kluwer Academic Publishers, Boston/Dordrecht/London (1991)MATHGoogle Scholar
  2. 2.
    W. Schockley, Solid-State Electron. 2, 35 (1961)CrossRefGoogle Scholar
  3. 3.
    E. M. Conwell, High Field Transport in Semiconductors, Supplement 9 Solid-State Physics, F. Seitz, D. Turnbull and H. Ehrenreich, Editors, Academic Press, New York/London (1967)Google Scholar
  4. 4.
    G. A. Baraff, Phys. Rev. 128, 2507 (1962)MATHCrossRefGoogle Scholar
  5. 5.
    B. K. Ridley and T. B. Watkins, Proc. Phys, Soc. (London) 78, 293 (1961)CrossRefGoogle Scholar
  6. 6.
    C. Hilsum Proc. IRE 50, 185 (1962)CrossRefGoogle Scholar
  7. 7.
    J. B. Gunn, Solid State Commun 1, 88 (1963)CrossRefGoogle Scholar
  8. 8.
    See Chapter 15 in Semiconductors, D. K. Ferry, Macmillan Publishing Company, New York (1991)Google Scholar
  9. 9.
    H. Shichijo and K. Hess, Phys. Rev. B 23, 4197–4207 (1981)Google Scholar
  10. 10.
    See the references in D. W. Bailey, C. J. Stanton and K. Hess, Phys. Rev. B 42, 3423 (1990)Google Scholar
  11. 11.
    See for example IBM Journal of Research and Development Volume 34, 4, (1990)Google Scholar
  12. 12.
    I. C. Kizilyalli and K. Hess, J. Appl. Phys. 65 2005 (1989)CrossRefGoogle Scholar
  13. 13.
    M. V. Fischetti and J. M. Higman, see Chapter 5 in ref aboveGoogle Scholar
  14. 14.
    A recent review and references to this work have been given by J. Frey, FED Journal Vol. 2, 12 (1992)Google Scholar
  15. 15.
    Milestone progress has recently been achieved by J. Bude, E. Grosse and R. K. Smith by developing a phase-space simplex Monte Carlo approach. J. Bude and R. Kent Smith, private communicationGoogle Scholar
  16. 16.
    S. Zollner, S. Gopalan and M. Cardona, J. Appl. Phys. 68, 1682 (1990)CrossRefGoogle Scholar
  17. 17.
    J. Y. Tang and K. Hess, J. Appl. Phys. 54, 5145 (1983)CrossRefGoogle Scholar
  18. 18.
    See, e.g., B. K. Ridley, Quantum Processes in Semiconductors Clarendon Press, Oxford (1982) Chapter 6.9Google Scholar
  19. 19.
    L. V. Keldysh, Sov. Phys. JETP 21, 1135 (1965)MathSciNetGoogle Scholar
  20. 20.
    E. O. Kane, Phys. Rev. 159, 624 (1967)CrossRefGoogle Scholar
  21. 21.
    J. Bude and K. Hess, J. Appl. Phys. 7, 8, October (1992)Google Scholar
  22. 22.
    B. K. Ridley, Semicond. Sci. Technol. 2, 116 (1986)CrossRefGoogle Scholar
  23. 23.
    See the treatment of the warm electron distribution in K. Hess and C. T. Sak, Phys. Rev. B 10, 3375 (1974)Google Scholar
  24. 24.
    J. Bude, Private communicationGoogle Scholar
  25. 25.
    J. Bude, K. Hess and G. J. Iafrate, Phys. Rev. B. 45, 10958, (1992)Google Scholar
  26. 26.
    P. Liopavsky, F. S. Khan, F. Abddsalami and J. W. Wilkins, Phys, Rev. B 43, 4885 (1991)Google Scholar
  27. 27.
    P. D. Yoder, J. M. Higman, J. Bude and K. Hess, Semicond. Sci. Technol. 7, B357 (1992)CrossRefGoogle Scholar
  28. 28.
    P. D. Yoder, V. Natoli and R. Martin, to be publishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Karl Hess
    • 1
  1. 1.Beckman Institute, Coordinated Science Laboratory and Department of Electrical and Computer EngineeringUniversity of Illinois, Urbana-ChampaignUSA

Personalised recommendations