Chloroplast-Retention in Ciliated Protozoa

  • Diane K. Stoecker


Plastid-retention differs in important respects from algal endosymbiosis. Unlike endosymbionts, plastids lack the genes that code for the polymerases necessary to replicate their own DNA. Thus, unless suitable nuclear gene products are present in the host cell and transferred to the plastids, the plastids cannot replicate and are evolutionarily dead. However, many protozoans have evolved mechanisms to “enslave” plastids. These adaptations range from perhaps fortuitous to apparently highly evolved. They present us with the opportunity to study organelle-cell interactions and mixotrophy (use of alternative modes of nutrition; e.g., photosynthesis and phagocytosis) from a unique perspective.


Algal Cell Benthic Foraminifera Thin Arrow Digestive Vacuole Planktonic Ciliate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blackbourn, D.J., F.J.R. Taylor, and J. Blackbourn. 1973. Foreign organelle retention by ciliates. J. Protozool. 20:286–288.Google Scholar
  2. Caron, D.A. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. MicrobioL 46:491–498.PubMedGoogle Scholar
  3. Hawes, C.R. and A.H. Cobb. 1980. The effects of starvation on the symbiotic chloroplasts in Elysia viridis:a fine structural study. New Phytol 84:375–379.CrossRefGoogle Scholar
  4. Huffaker, R.C. 1982. Biochemistry and physiology of leaf proteins. p. 370–400. In:Nucleic Acids and Proteins in Plants, I. D. Boultier and B. Parthier (eds.). Springer-Verlag, New York.CrossRefGoogle Scholar
  5. Jonsson, P.R. 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous cilates. Mar. Ecol. Frog. Ser. 33:265–277.CrossRefGoogle Scholar
  6. Jonsson, P.R. 1987. Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar. Microbiol. Food Webs 2:55–68.Google Scholar
  7. Kyle, D.J. 1985. Light-induced turnover of the 32-kd quinone-binding protein of green plant chloroplasts. p. 33–38. In: Molecular Biology of the Photosynthetic Apparatus, K.E. Steinback, S. Bonitz, D.J. Arntzen, and L. Bogorad (eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  8. Larsen, J. 1988. An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27:366–377.CrossRefGoogle Scholar
  9. Laval-Peuto, M. and M. Febvre. 1986. On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichina). Biosystems 19:137–158.PubMedCrossRefGoogle Scholar
  10. Laval-Peuto, M. and F. Rassoulzadegan. 1988. Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159:99–110.CrossRefGoogle Scholar
  11. Laval-Peuto, M., P. Salvano, P. Gayol, and C. Greuet. 1986. Mixotrophy in marine planktonic ciliates: ultrastructural study of Tontonia appendiculariformis (Ciliophora, Oligotrichina). Mar. Microbiol. Food Webs 1:81–104.Google Scholar
  12. Lanners, E.B. 1983. Fine structural analysis of two Foraminifera with sequestered chloroplasts. p. 515. In: Endocytobiology, Vol II, H. E. A. Schenk and W. Schwemmler (eds).Walter de Gruyter & Co., BerlinGoogle Scholar
  13. Lee, J.J., E. Lanners, and B.T. Kuile. 1988. The retention of chloroplasts by the Foraminifer Elphidium crispum. Symbiosis 5:45–60.Google Scholar
  14. Leutenegger, S. 1984. Symbiosis in benthic Foraminifera: specificity and host adaptations. J. Foraminiferal Res. 14:16–35.CrossRefGoogle Scholar
  15. Lindholm, T. and A.-C. Mörk. 1989. Symbiotic algae and plastids in planktonic ciliates. Memoranda Soc. Fauna Flora Fenn. 65:17–22.Google Scholar
  16. Lopez, E. 1979. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar. Biol.. 53:201–211.CrossRefGoogle Scholar
  17. Messer, G. and Y. Ben-Shaul. 1972. Changes in chloroplast structure during growth of Peridinium cinctum fa. westii (Dinophyceae). Phycologia 11:291–299.CrossRefGoogle Scholar
  18. Montagnes, D.J.S., D.H. Lynn, D.K. Stoecker, and E.B. Small. 1988. Taxonomic descriptions of one new species and redescription of four species in the family Strombidiidae (Ciliophora, Oligotrichida). J. Protozool. 35:189–97Google Scholar
  19. Patterson, D.J. and M. Dürrschmidt. 1987. Selective retention of chloroplasts by algivorous Heliozoa; fortuitous chloroplast symbiosis? Eur. J. Protistol 23:51–55.PubMedCrossRefGoogle Scholar
  20. Putt, M. and D.K. Stoecker. 1989. An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr. 34:1097–1103.CrossRefGoogle Scholar
  21. Putt, M. 1990a. Metabolism of photosynthate in the chloroplast-retaining ciliate Laboea strobila. Mar. Ecol. Prog. Ser. 60:271–282.CrossRefGoogle Scholar
  22. Putt, M. 1990b. Abundance, chlorophyll content and photosynthetic rates of ciliates in the Nordic Seas during summer. Deep-Sea Res. 37:1713–1731.CrossRefGoogle Scholar
  23. Reith, M.E. and R.A. Cattolico. 1985. Chloroplast protein synthesis in the chromophytic alga Olisthodiscus luteus. Plant Physiol. 79:231–236.PubMedCrossRefGoogle Scholar
  24. Rhiel, E., E. Morschel, and W. Wehrmeyer. 1985. Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes in Cryptomonas maculata following nutrient deficiency. Protoplasma 129:62–73.CrossRefGoogle Scholar
  25. Rogerson, A., B.J. Finlay, and U.-G. Berninger. 1989. Sequestered chloroplasts in the freshwater ciliate Strombidium viride (Ciliophora: Oligotrichida). Trans. Am. Microsc. Soc. 108:117–126.CrossRefGoogle Scholar
  26. Schnepf, E. 1992. From prey via endosymbiont to plastid: Comparative studies in dinoflagellates. In: Prochlorophytes,Symbiogenesis and the Origins of Chloroplasts, R.A. Lewin (ed.). Chapman & Hall, New York and London.Google Scholar
  27. Schnepf, E., R. Meier, and G. Drebes. 1988. Stability and deformation of diatom chloroplasts during food uptake of the parasitic dinoflagellate, Paulsenella (Dinophyta). Phycologia 27:283–290.CrossRefGoogle Scholar
  28. Stoecker, D.K. 1991. Mixotrophy in marine planktonic ciliates: physiological and ecological aspects of plastid-retention by oligotrichs. p. 161–179. In: Protozoa and Their Role in Marine Processes, P.C. Reid, C.M. Turley, and P.H. Burkill (eds). NATO ASI Ecological Series, Springer-Verlag.CrossRefGoogle Scholar
  29. Stoecker, D.K. and A.E. Michaels. 1991. Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Mar. Biol. 108:441–447.CrossRefGoogle Scholar
  30. Stoecker, D.K., A.E. Michaels, and L.H. Davis. 1987. Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326:79–792.CrossRefGoogle Scholar
  31. Stoecker, D.K. and M.W. Silver. 1987. Chloroplast retention by marine planktonic ciliates. Endocytobiology III. Annu. NY Acad. Sci. 503:562–565.CrossRefGoogle Scholar
  32. Stoecker, D.K. and M.W. Silver. 1990. Replacement and aging of chloroplasts in Strombidium capitatum (Ciliophora: Oligotrichida). Mar. Biol. 107:491–502.CrossRefGoogle Scholar
  33. Stoecker, D.K., A. Taniguchi, and A.E. Michaels. 1989. Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Frog. Ser. 50:241–254.CrossRefGoogle Scholar
  34. Stoecker, D.K., M.W. Silver, A.E. Michaels, and L.H. Davis. 1988/1989. Enslavement of algal chloroplasts by four Strombidium spp. (Ciliophora, Oligotrichida). Mar. Microbiol. Food Webs 3:79–100.Google Scholar
  35. Stoecker, D.K., M.W. Silver, A.E. Michaels, and L.H. Davis. 1988. Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Mar. Biol. 99:415–423.CrossRefGoogle Scholar
  36. Trench, R.K. 1981. Chloroplasts: presumptive and de facto organelles. p. 341–355. In:Origins and Evolution of Eukaryotic Intracellular Oganelles. Annu. NYAcad. Sci.361, J.F. Frederick (ed.), New York Academy of Sciences, NY.Google Scholar
  37. Weeden, N.F. 1981. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J. Mol. Evol. 17:133–139.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Diane K. Stoecker
    • 1
  1. 1.Horn Point Environmental LaboratoryThe University of Maryland SystemCambridgeUSA

Personalised recommendations