Skip to main content

Molecular Phylogeny of Oxygenic Cells and Organelles Based on Small-Subunit Ribosomal RNA Sequences

  • Chapter
Origins of Plastids

Abstract

The evolution of oxygenic photosynthesis stands apart as the most significant event in the biogeochemical history of our earth. It would be difficult to imagine a more far-reaching occurrence — the planetary atmosphere was modified forever towards an opposite end of the chemical spectrum. The early atmosphere was reducing, could support the abiotic synthesis of simple organic compounds from which life could evolve, and left a geological legacy in the form of an extensive deposition of reduced minerals. Among the earliest forms of life were those able to harvest biochemical energy from the oxidation and reduction of inorganic compounds, and phototrophs able to trap energy from another readily available source — light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brockmann, H.A.L. 1983. Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlornum. Arch. Microbiol. 136:17–19.

    Article  CAS  Google Scholar 

  • Douglas, S.E., D.G. Durnford, and C.W. Morden. 1990. Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas Φ: evidence supporting the polyphyletic origin of plastids. J. Phycol. 26:500–508.

    Article  CAS  Google Scholar 

  • Douglas, S.E. and S. Turner. 1991. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J. Mol. Evol. 33:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M. and E. Margoliash. 1967. Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequence is of general applicability. Science 155:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Francois, L.M. 1986. Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320:352–354.

    Article  CAS  Google Scholar 

  • Giovannoni, S.J., K. Turner, G.J. Olsen, S. Barns, D.J. Lane, and N.R. Pace. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170:3584–3592.

    PubMed  CAS  Google Scholar 

  • Hayes, J.M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Iwabe, N., K. Kuma, M. Hasegawa, S. Osawa, and T. Miyata. 1989. Evolutionary relationships of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes.Proc. NatL Acad. Sci. USA. 86:9355–9359.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, N. and T. Ohta. 1972. On the stochastic model for estimation of mutational distance between homologous proteins. J. Mol. Evol. 2:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Lignon, P.J.B., K.G. Meyer, J.A. Martin, and S.E. Curtis. 1991. Nucleotide sequence of a 16S rRNA gene from Anabaena sp. strain PCC 7120. NAR 19:4553.

    Article  Google Scholar 

  • Maid, U. and K. Zetsche. 1991. Structural features of the plastid ribosomal RNA operons of two red algae: Antithamnion sp. and Cyanidium caldarium. Plant Mol. Biol. 16:537–546.

    Article  PubMed  CAS  Google Scholar 

  • Manhardt, J.R. and J.D. Palmer. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345:268–270.

    Article  Google Scholar 

  • Markowicz, Y., S. Loiseaux-de Góer, and R. Mache. 1988. Presence of a 16S rRNA pseudogene in the bi-molecular plastid genome of the primitive brown alga Pyaiella littorales. Evolutionary implications. Curr. Genet. 14:599–608.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F. 1991. Ribosomal RNA and Translation. Annu. Rev. Biochem. 60:191–227.

    Article  PubMed  CAS  Google Scholar 

  • Ochman, H. and A.C. Wilson. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:74–86.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, G.J. 1988. The earliest evolutionary branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symp. Quant. Biol. 52, In press.

    Google Scholar 

  • Pühler, G., H. Leffers, F. Gropp, P. Palm, H. Klenk, F. Lottspeich, R. Garrett, and W. Zillig. 1989. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc. Natl. Acad. Sci. USA 86:4569–4573.

    Article  PubMed  Google Scholar 

  • Schopf, J.W. 1988. Molecular evolution and the fossil record. T.W. Broadhead (ed.), University of Tennessee, Knoxville, TN.

    Google Scholar 

  • Seckbach, J. 1991. Systematic problems with Cyanidium caldarium and Galdieria sulphuraria and their implications for molecular biology studies. J. Phycol. 27:794–796.

    Article  Google Scholar 

  • Sogin, M.L. 1991. Early evolution and the origin of eukaryotes. Curr. Opin. Gen. Dev. 1:457–463.

    Article  CAS  Google Scholar 

  • Swofford, D.L. 1990. PAUP: Phylogenetic analysis using parsimony, Version 3.4. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • Towe, K.M. 1990. Aerobic respiration in the archaean? Nature 348:54–56.

    Article  PubMed  CAS  Google Scholar 

  • Turner, S., T. Burger-Wiersma, S.J. Giovannoni, L.R. Mur, and N.R. Pace. 1989. The relationship of a prochlorophyte, Prochlorothrix hollandica, to green chloroplasts. Nature 337:380–382.

    Article  PubMed  CAS  Google Scholar 

  • Urbach, E., D. Robertson, and S.W. Chisholm. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, J.M. and F.R. Whatley. 1981. Chloroplast evolution. New Phytol. 87:233–247.

    Article  CAS  Google Scholar 

  • Woese, C.R. 1985. Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giovannoni, S.J., Wood, N., Huss, V. (1992). Molecular Phylogeny of Oxygenic Cells and Organelles Based on Small-Subunit Ribosomal RNA Sequences. In: Lewin, R.A. (eds) Origins of Plastids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2818-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2818-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6218-0

  • Online ISBN: 978-1-4615-2818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics