Skip to main content

Global Geographic Information Systems and Databases for Vegetation Change Studies

  • Chapter
Vegetation Dynamics & Global Change

Abstract

A description of the geographical distribution of the world’s vegetation is a key ingredient of global-vegetation-change studies. One central question is: how is the current distribution of vegetation influenced by climatic factors and human disturbance, and how will it be influenced in the future? Finding the answer will depend largely on the development of models which consider the dynamic interplay between climatic factors, biogeochemistry, and human disturbance. Because the global landscape is spatially heterogeneous and complex, these models will need to depict the geographical distribution of various primary attributes. This necessitates the development of geographically referenced data-sets and information systems (National Research Council 1986; IGBP 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banin, A.J., Lawless, J.G. and Whitten, R.C. (1984). Global N2O cycles, terrestrial emissions, atmospheric accumulation, and biospheric effects. Advances in Space Research, 4(12), 207–16.

    Article  PubMed  CAS  Google Scholar 

  • Berry, J.K. (1987). Computer assisted map analysis: Potential and pitfalls. Photogrammetric Engineering and Remote Sensing, 53(10), 1405–10.

    Google Scholar 

  • Bolin, B. (1984). Global biogeochemical cycles: Studies of interaction and change—Some views on the strategy of approach. In The Interaction of Global Biochemical Cycles, ed. B. Moore and M. Dastoor, pp. 25–51. JPL Publication 84–21. Jet Propulsion Lab, NASA, Pasadena, California.

    Google Scholar 

  • Calkins, H.W. and Tomlinson, R.F. (1977). Geographic information systems, methods and equipment for land use planning. International Geographic Union Commission on Geographic Data Sensing and Processing, Resource and Land Investigations Program, U.S. Geologic Survey, Reston, Virginia.

    Google Scholar 

  • Central Intelligence Agency. (1987). World Data Bank II. PB87-184768. Washington, D.C.: National Technical Information Service.

    Google Scholar 

  • Chase, R.R.P. (1989). Toward a complete Eos data and information system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 125–31.

    Article  Google Scholar 

  • Cowen, D.J. (1988). GIS versus CAD versus DBMS: What are the differences? Photogrammetric Engineering and Remote Sensing, 54(11), 1551–5.

    Google Scholar 

  • Crettez, J. (1980). A pseudo-cosine transformation for hexagonal Tessellation with an heptarchical organization. Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing, Miami Beach, 1980, pp. 192–4.

    Google Scholar 

  • Crutzen, P.J., Heidt, L.E., Krasnec, J.P., Pollock, W.H. and Seiler, W. (1979). Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature, 282, 253–6.

    Article  CAS  Google Scholar 

  • Dutton, J.A. (1989). The Eos Data and Information System: Concepts for design. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 109–16.

    Article  Google Scholar 

  • Earth Systems Science Committee. (1988). Earth System Science, A Closer View. Report of the NASA Advisory Council. Washington, D.C.: National Aeronautics and Space Administration.

    Google Scholar 

  • Emanuel, W.R., Fung, I.Y.S., Killough, G.G., Moore, B. and Peng, T.H. (1985a). Modeling the global carbon cycle and changes in the atmospheric carbon dioxide levels. In Atmospheric Carbon Dioxide and the Global Carbon Cycle, ed. J.R. Trabalka, pp. 141–73. DOE/ER-0239. Washington, D.C.: U.S. Department of Energy.

    Google Scholar 

  • Emanuel, W.R., Moore, B. and Shugart, H.H. (1984). Some aspects of understanding changes in the global carbon cycle. In The Interaction of Global Biochemical Cycles, ed. B. Moore and M. Dastoor, pp. 55–83. JPL Publication 84-#21. Jet Propulsion Lab, NASA, Pasadena, California.

    Google Scholar 

  • Emanuel, W.R., Shugart, H.H. and Stevenson, M.P. (1985b). Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7, 29–43.

    Article  Google Scholar 

  • Fearnside, P.M. (1986). Spatial concentration of deforestation in the Brazilian Amazon. Ambio, 15(2), 74–81.

    Google Scholar 

  • Gibson, L. and Lucas, D. (1982). Spatial data processing using generalized balanced ternary. Computer Graphics and Image Processing, 20, 82–9.

    Article  Google Scholar 

  • Greenberg, J.P., Zimmerman, P.P., Heidt, L.E. and Pollock, W. (1984). Hydrocarbon and carbon monoxide emissions from biomass burnings in Brazil. Journal of Geophysical Research, 98, 1350–4.

    Article  Google Scholar 

  • Hahn, C.J., Warren, S.G., London, J., Chervin, R.M. and Jenne, R.L. (1982). Atlas of simultaneous occurrence of different cloud types over the ocean. NCAR Technical Note TN-201+STR (NTIS number PB83-152074). Boulder, Colorado: National Center for Atmospheric Research.

    Google Scholar 

  • Hahn, C.J., Warren, S.G., London, J., Chervin, R.M. and Jenne, R.L. (1984). Atlas of simultaneous occurrence of different cloud types over land. NCAR Technical Note TN-241+STR (NTIS number PB88-118641/AS). Boulder, Colorado: National Center for Atmospheric Research.

    Google Scholar 

  • Hahn, C.J., Warren, S.G., London, J., Jenne, R.L. and Chervin, R.M. (1988). Climatological data for clouds over the globe from surface observations. NDP026. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.

    Google Scholar 

  • Holdridge, L.R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367–8.

    Article  PubMed  CAS  Google Scholar 

  • Houghton, R.A., Boone, R.D., Fruci, J.R., Hobbie, J.E., Melillo, J.M., Palm, C.A., Peterson, B.J., Shaver, G.R., Woodwell, G.M., Moore, B., Skole, D.L. and Myers, N. (1987). The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographic distribution of the global flux. Tellus, 39B, 122–39.

    Article  CAS  Google Scholar 

  • Houghton, R.A., Boone, R.D., Melillo, J.M., Palm, C.A., Woodwell, G.M., Myers, N., Moore, B. and Skole, D.L. (1985a). Net flux of CO2 from tropical forests in 1980. Nature, 316, 617–20.

    Article  CAS  Google Scholar 

  • Houghton, R.A., Hobbie, J.E., Melillo, J.M., Moore, B., Peterson, B.J., Shaver, G.R. and Woodwell, G.M. (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecological Monographs, 53, 235–62.

    Article  CAS  Google Scholar 

  • Houghton, R.A., Lefkowitz, D.S. and Skole, D.L. (1991). Changes in the landscape of Latin America between 1850 and 1985. I. Progressive loss of forest. Forest Ecology and Management, 38, 143–172.

    Article  Google Scholar 

  • Houghton, R.A., Schlesinger, W.H., Brown, S. and Richards, J.F. (1985b). Carbon dioxide exchange between the atmosphere and terrestrial ecosystems. In Atmospheric Carbon Dioxide and the Global Carbon Cycle, ed. J.R. Trabalka, pp. 113–40. DOE/ER-0239. Washington, D.C.: U.S. Department of Energy.

    Google Scholar 

  • Houghton, R.A. and Skole, D.L. (1990). Changes in the global carbon cycle between 1700 and 1985. In The Earth as Transformed by Human Action, ed. B.L. Turner, pp. 393–408. New York: Cambridge University Press.

    Google Scholar 

  • IBGE (Instituto Brasileiro do Geografia e Estatistica). (1936–80). Anuario Estatistico do Brasil. Rio de Janeiro.

    Google Scholar 

  • IBGE (Instituto Brasileiro do Geografia e Estatistica). (1970–80). Censo Agropecuario. Rio de Janeiro.

    Google Scholar 

  • IGBP (International Geosphere-Biosphere Programme). (1988). Global Change. Report No. 4. Special Committee for the IGBP, Stockholm, Sweden.

    Google Scholar 

  • Kahn, R. and Leidecker, H. (1989). The crush of new data knocking at our door, or how to read “one Library of Congress” every few weeks. Renewable Resources, 7:8–13.

    Google Scholar 

  • Khalil, M.A.K, and Rasmussen, R.A. (1983). Sources, sinks, and seasonal cycles of atmospheric methane. Science, 224, 54–6.

    Article  Google Scholar 

  • Lanly, J.-P. (1982). Tropical Forest Resources. FAO Forestry Paper 30. Rome: Food and Agriculture Organization, United Nations.

    Google Scholar 

  • Malingreau, J.P. and Tucker, C.J. (1988). Large scale deforestation in the southeastern Amazon Basin of Brazil. Ambio, 17(1), 49–54.

    Google Scholar 

  • Matson, M. and Dozier, J. (1981). Identification of subresolution high temperature sources using thermal IR sensors. Photogrammetric Engineering and Remote Sensing, 47(9), 1311–8.

    Google Scholar 

  • Matson, M., Schneider, S.R., Aldridge, B. and Satchwell, B. (1984). Fore Detection Using NOAA-Series Satellite. NOAA Technical Report NESDIS-7. Washington, D.C.

    Google Scholar 

  • Matthews, E. (1983). Global vegetation and land use: New high resolution data bases for climate studies. Journal of Climate and Applied Meteorology, 22(3), 474–87.

    Article  Google Scholar 

  • Moore, B., Boone, R.D., Hobbie, J.E., Houghton, R.A., Melillo, J.M., Peterson, B.J., Shaver, G.R., Vorosmarty, C.J. and Woodwell, G.M. (1981). A simple model of the role of terrestrial ecosystems in the global carbon budget. In Carbon Cycle Modelling, ed. B. Bolin, pp. 365–85. SCOPE 16. Chichester: John Wiley & Sons.

    Google Scholar 

  • Moore, B., Gildea, M.P., Vorosmarty, C.J., Skole, D.L., Melillo, J.M., Peterson, B.J., Rastetter, E.B. and Steudler, P.A. (1989). Biogeochemical cycles. In Global Ecology, ed. M.B. Ramber, L. Margulis and R. Fester, pp. 113–41. San Diego: Academic Press.

    Google Scholar 

  • NASA (National Aeronautics and Space Administration). (1988). From Pattern to Process: The Strategy of the Earth Observing System. Eos Science Steering Committee Report, Volume II. Washington, D.C.: National Aeronautics and Space Administration.

    Google Scholar 

  • National Oceanic and Atmospheric Administration. (1988). ETOPO 5-Minute Gridded World Elevations. Boulder, Colorado: National Geophysical Data Center.

    Google Scholar 

  • National Research Council. (1986). Global Change in the Geosphere-Biosphere. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Nelson, R. and Holben, B. (1986). Identifying deforestation in Brazil using multiresolution satellite data. International Journal of Remote Sensing, 7(3), 429–48.

    Article  Google Scholar 

  • Olson, J.S., Watts, J. A. and Allison, L.J. (1983). Carbon in Live Vegetation of Major World Ecosystems. ORNL-5862. Oak Ridge, Tennessee: Oak Ridge National Laboratory.

    Google Scholar 

  • Olson, J.S., Watts, J.A. and Allison, L.J. (1985). Major ecosystem complexes ranked by carbon in live vegetation: A database. Oak Ridge, Tennessee: Carbon Dioxide Information Center, Oak Ridge National Laboratory.

    Google Scholar 

  • Parker, H.D. (1988). The unique qualities of a geographic information system: A commentary. Photogrammetric Engineering and Remote Sensing, 54(11), 1547–9.

    Google Scholar 

  • Peuquet, D.J. (1984). A conceptual framework and comparison of spatial data models. Cartographica, 21(4), 66–113.

    Article  Google Scholar 

  • Post, W.M., Emanuel, W.R., Zinke, P.J. and Stangenberger, A.G. (1982). Soil carbon pools and world life zones. Nature, 298(5870), 156–9.

    Article  CAS  Google Scholar 

  • Post, W.M., Pastor, J., Zinke, P.J. and Stangenberger, A.G. (1984). Global patterns of soil nitrogen storage. Nature, 317(6038), 613–6.

    Article  Google Scholar 

  • Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing Surveys, 16(2), 187–260.

    Article  Google Scholar 

  • Siegenthaler, U. and Oeschger, H. (1987). Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus, 39B, 140–54.

    Article  CAS  Google Scholar 

  • Smith, T.R., Menon, S., Star, J.L. and Estes, J.E. (1987). Requirements and principles for the implementation and construction of large-scale geographic information systems. International Journal of Geographical Information Systems, 1(1), 13–32.

    Article  Google Scholar 

  • Spangler, W. and Jenne, L. (1984). World monthly surface station climatology. National Center for Atmospheric Research, Scientific Computing Division, (unpublished).

    Google Scholar 

  • Tucker, C.J., Townshend, J.R.G., Goff, T.E. and Holben, B.N. (1986). Continental and global scale remote sensing of land cover. In The Changing Carbon Cycle: A Global Analysis, ed. J.R. Trabalka and D.E. Reichle, pp. 221–41. New York: Springer-Verlag.

    Google Scholar 

  • U.S. Navy. (1984). Global 10-Minute Elevation Data. Boulder, Colorado: National Center for Atmospheric Research.

    Google Scholar 

  • van Roessel, J.W. (1988). Conversion of Cartesian coordinates from and to generalized balanced ternary addresses. Photogrammetric Engineering and Remote Sensing, 54(11), 1565–70.

    Google Scholar 

  • Willmott, C.J., Rowe, C.M. and Mintz, Y. (1985). Climatology of the terrestrial seasonal water cycle. Journal of Climatology, 5(6), 589–606.

    Article  Google Scholar 

  • Wilson, M.F. and Henderson-Sellers, A. (1985). A global archive of land cover and soils data for use in general circulation climate models. Journal of Climatology, 5, 119–43.

    Article  Google Scholar 

  • Woodwell, G.M., Houghton, R.A., Stone, T.A. and Park, A.B. (1986). Changes in the area of forests in Rondonia, Amazon Basin, measured by satellite imagery. In The Changing Carbon Cycle: A Global Analysis, ed. J.R. Trabalka and D.E. Reichle, pp. 242–57. New York: Springer-Verlag.

    Google Scholar 

  • Zinke, P.J., Stangenberger, A.G., Post, W.M., Emanuel, W.R. and Olson, J.S. (1984). Worldwide Organic Soil Carbon and Nitrogen Data. ORNL/TM-8857. Oak Ridge, Tennessee: Oak Ridge National Laboratory.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skole, D.L., Moore, B., Chomentowski, W.H. (1993). Global Geographic Information Systems and Databases for Vegetation Change Studies. In: Solomon, A.M., Shugart, H.H. (eds) Vegetation Dynamics & Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2816-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2816-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6217-3

  • Online ISBN: 978-1-4615-2816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics