Skip to main content

Late Jurassic Paleoclimate of Pangea Based on Results from a General Circulation Model

  • Chapter
Biogeochemistry of Global Change

Abstract

The progressive disintegration of Pangea occurred during the Jurassic period. The Late Jurassic Epoch represented a time when rift systems divided Gondwana in two, and separated northern Gondwana from North America. Rising eustatic sea level throughout the Jurassic flooded large parts of the continents particularly in the Northern Hemisphere. These conditions created a series of zonally oriented continents and contributed significantly to climate amelioration in the mid-Mesozoic. This chapter focuses on the changed paleoclimate caused by Pangea’s disintegration.

General circulation models (GCM) that run on today’s supercomputers can be valuable tools in recreating the paleoclimate of brief and important geologic time intervals. We report results from a seasonal GCM simulation for the Late Jurassic. The geological and geochemical record favors an elevated greenhouse effect.

Model results from a simulation using 1120 ppm CO2, four times the preindustrial level, produce a paleoclimate that fits the geologic record. Sea ice is restricted to the high latitudes, making landfall only in restricted areas. The trade winds bring heavy seasonal rainfall to eastern Gondwana and to the Tethys Sea margins. A strong summer monsoon occurs over southeast Asia. The distribution of coal-forming environments correlates with precipitation sufficient to maintain gymnosperm forests and soil moisture distribution. Evaporites are localized to areas of negative precipitation-minus-evaporation. These simulations predict the distribution of large-scale zonal phenomena (e.g., evaporites, carbonates, coals) and more complex, environmentally sensitive deposits (e.g., corals). The GCM results are impressive considering the model’s simplistic nature, coarse grid, and many parameterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baliunas, S., and R. Jastrow. 1990. Evidence for long-term brightness changes of solar-type stars. Nature 348:520–522.

    Article  Google Scholar 

  2. Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414.

    Article  CAS  Google Scholar 

  3. Barron, E.J. 1985. Numerical climate modeling; a frontier in petroleum source rock prediction: results based on Cretaceous simulations: AAPG Bull. 69:448–459.

    Google Scholar 

  4. Barron, E.J., and W.M. Washington. 1982. Cretaceous climate: A comparison of atmospheric simulations with the geologic record: Palaeogeog. Palaeoclim. Palaeoecol. 40:103–133.

    Article  Google Scholar 

  5. Barron, E.J., and W.M. Washington. 1985. Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism: The carbon cycle and atmospheric CO2: Natural variations Archean to Present. A.G.U. Geophy. Mon. 32:546–553.

    Google Scholar 

  6. Berlin, T.S., D.P. Naydin, V.N. Saks, R.V. Teis, and A.V. Khabakov. 1966. Jurassic and Cretaceous climate in northern USSR, from paleotemperature determinations. Internat. Geol. 9:1080–1092.

    Google Scholar 

  7. Bourke, W. 1974. A multi-level spectral model. I. Formulations and hemispheric integrations: Monthly Weather Rev. 102:687–701.

    Article  Google Scholar 

  8. Bourke, W., B. McAvaney, K. Puri, and R. Thurling. 1977. Global modeling of atmospheric flow by spectral methods. In J. Chang (ed.), Methods in Computational Physics, Academic Press, New York, vol. 17, pp. 267–324.

    Google Scholar 

  9. Cess, R.D., et al. 1989. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science 245:513–516.

    Article  CAS  Google Scholar 

  10. Cess, R.D., et al. 1991. Interpretation of snow-climate feedback as produced by 17 general circulation models. Science 253:888–892.

    Article  CAS  Google Scholar 

  11. Chandler, M.A. 1989. Aridity at mid and low latitudes in warmer climates: A simulation of the Jurassic climate using the GISS GCM (Abs.). EOS 70:1010.

    Google Scholar 

  12. Christie-Blick, N. 1982. Pre-Pleistocene glaciation on Earth: Implications for climatic history of Mars. Icarus 50:423–443.

    Article  Google Scholar 

  13. Crowell, J.C., and L.A. Frakes. 1970. Phanerozoic glaciation and the causes of ice ages. Amer. J. Sci. 268:193–224.

    Article  Google Scholar 

  14. Crowell, J.C., and L.A. Frakes. 1975. The late Paleozoic glaciation. In K.S.W. Campbell (ed.), Gondwana Geology, National University Press, Canberra, Australia, pp. 313–331.

    Google Scholar 

  15. Crowley, T.J., J.G. Mengel, and D.A. Short. 1987. Gondwana’s seasonal cycle. Nature 329:803–807.

    Article  Google Scholar 

  16. Crowley, T.J., W.T. Hyde, and D.A. Short. 1989. Seasonal cycle variations on the supercontinent of Pangaea. Geology 17:457–460.

    Article  Google Scholar 

  17. Crowley, T.J., and G.R. North. 1991. Paleoclimatology, Oxford University Press, Oxford.

    Google Scholar 

  18. Frakes, L.A. 1979. Climates Throughout Geologic Time, Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  19. Gérard, J.-C. 1990. Modelling the climate response to solar variability. Phil. Trans. Royal Soc. London, Ser. A 330:561–574.

    Article  Google Scholar 

  20. Gilliland, R.L. 1989. Solar evolution. Palaeogeog. Palaeoclim. Palaeoecol. 75:35–55.

    Article  Google Scholar 

  21. Hallam, A. 1982. The Jurassic climate. In Climate in Earth History, National Academy Press, Washington, DC, pp. 159–162.

    Google Scholar 

  22. Hallam, A. 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeog. Palaeoclim. Palaeoecol. 47:195–223.

    Article  Google Scholar 

  23. Hallam, A. 1985. A review of Mesozoic climates. J. Geol. Soc. London 142:433-

    Article  Google Scholar 

  24. Hallam, A. 1988. A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In C.K. Wilgus et al. (eds.), Sea Level Changes-An Integrated Approach, SEPM Spec. Pub., no. 42, Society Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 261–273.

    Google Scholar 

  25. Harland, W.B., R.L. Armstrong, A.V. Cox, L.E. Craig, A.G. Smith, and D.G. Smith. 1990. Geological Time Scale 1989, Cambridge University Press, Cambridge.

    Google Scholar 

  26. Haq, B.U., J. Hardenbol, and P.R. Vail. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In C.K. Wilgus et al. (eds.), Sea Level Changes-An Integrated Approach, SEPM Spec. Pub. 42, Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 71–108.

    Google Scholar 

  27. Kutzbach, J.E., and R.G. Gallimore. 1989. Pangaean climates: Megamonsoons of the megacontinent. J. Geophys. Res. 94:3341–3357.

    Article  Google Scholar 

  28. McAvaney, B.J., W. Bourke, and K. Puri. 1978. A global spectral model for simulation of the general circulation. J. Atmos. Sci. 35:1557–1583.

    Article  Google Scholar 

  29. Moore, G.T., D.N. Hayashida, C.A. Ross, and S.R. Jacobson. 1992. The paleo-climate of the Late Jurassic world: I. Results from a general circulation model. Palaeogeog. Palaeoclim. Palaeoecol., 93:113–150.

    Article  Google Scholar 

  30. Moore, G.T., C.J. Peoples, and S.C. Luhn. 1989. The paleoclimate of the early Late Permian World. EOS 70:1010.

    Google Scholar 

  31. Parrish, A.M. Ziegler, and C.R. Scotese. 1982. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeog. Palaeoclim. Palaeoecol. 40:67–101.

    Article  Google Scholar 

  32. Pitcher, E.J., R.C. Malone, V. Ramanathan, M.L. Blackmon, K. Puri, and W. Bourke. 1983. January and July simulations with a spectral general circulation model. J. Atmos. Sci., 40:580–604.

    Article  Google Scholar 

  33. Ramanathan, V., E.J. Pitcher, R.C. Malone, and M.L. Blackmon. 1983. The response of a spectral general circulation model to refinements in radiative processes. Amer. Meteor. Soc. 40:605–630.

    CAS  Google Scholar 

  34. Reid, G.C. 1991. Solar total irradiance variations and the global sea surface temperature record. J. Geophys. Res. 96:2835–2844.

    Article  Google Scholar 

  35. Ross, C.A., and J.R.P. Ross. 1983. Late Paleozoic accreted terranes of western North America. In C.H. Stevens (ed.), Pre-Jurassic rocks in western North American suspect terranes, Pacific Sec., Society Economic Paleontologists and Mineralogists, Los Angeles, CA, pp. 7–22.

    Google Scholar 

  36. Rowley, D.B. 1992. Preliminary Jurassic reconstructions of the Circum-Pacific region. In G.E.G. Westermann (ed.), The Jurassic of the Circum-Pacific, IGCT Project 171, Cambridge University Press, Cambridge, pp. 15–27.

    Google Scholar 

  37. Scotese, C.R., and J. Golonka. 1992. Paleogeographic Atlas: PALEOMAP Project, University of Texas at Arlington, Arlington, TX.

    Google Scholar 

  38. Sloan, L.C. 1990. Determination of critical factors in the simulation of Eocene global climate, with special reference to North America. Ph.D. dissertation, Penn State University.

    Google Scholar 

  39. Sloan, L.C., and E.J. Barron. 1989. Eocene climate based on results from atmospheric circulation model experiments. EOS 70:374–375.

    Google Scholar 

  40. Sloan, L.C., and E.J. Barron. 1990. “Equable” climates in Earth history? Geology 18:489–492.

    Article  Google Scholar 

  41. Sloan, L.C., and E.J. Barron. 1992. A comparison of Eocene climate model results to quantified paleoclimatic interpretations. Palaeogeog. Palaeoclim. Palaeoecol. 93:183–202.

    Article  Google Scholar 

  42. Washington, W.M., and G.A. Meehl. 1983. General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentrations. J. Geophys. Res. 88:6600–6610.

    Article  CAS  Google Scholar 

  43. Washington, W.M., and G.A. Meehl. 1984. Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean. J. Geophys. Res. 89:9475–9503.

    Article  CAS  Google Scholar 

  44. Washington, W.M., and D.L. Williamson. 1977. A description of the NCAR global circulation models. In J. Chang (ed.), Methods in Computational Physics, Academic Press, New York, Vol. 17, pp. 111–169.

    Google Scholar 

  45. White, O.R. 1977. The Solar Output and Its Variation, Colorado Associated University Press, Boulder, CO.

    Google Scholar 

  46. Ziegler, A.M. 1981. Paleozoic paleogeography. In M.W. McElhinny and D.A. Valencio (eds.), Paleoreconstruction of the Continents, American Geophysical Union, Washington, DC, and Geological Society of America, Boulder, CO, pp. 31–37.

    Chapter  Google Scholar 

  47. Ziegler, A.M., C.R. Scotese, and S.F. Barrett. 1983. Mesozoic and Cenozoic paleogeographic maps. In P. Brosche and J. Sündermann (eds.), Tidal Friction and the Earth’s Rotation II, Springer-Verlag, Berlin, pp. 240–252.

    Google Scholar 

  48. Ziegler, P.A. 1988. Evolution of the Arctic-North Atlantic and the western Tethys: AAPG Mem. 43, Tulsa, OK, 198 p., 30 plates.

    Google Scholar 

  49. Valdes, P.J., and B.W. Sellwood, 1992. A palaeoclimate model for the Kimmeridgian. Palaeogeog. Palaeoclim. Palaeoecol. 95:47–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moore, G.T., Hayashida, D.N., Ross, C.A., Jacobson, S.R. (1993). Late Jurassic Paleoclimate of Pangea Based on Results from a General Circulation Model. In: Oremland, R.S. (eds) Biogeochemistry of Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2812-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6215-9

  • Online ISBN: 978-1-4615-2812-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics