Ancient Ice Air Content of the Vostok Ice Core

  • I. P. Semiletov


A deep ice core drilled at Vostok Station, Antarctica, provides a record of atmospheric climate and CO2 that is representative of global changes over the last glacial-interglacial-penultimate glacial cycle (about 200 kyr). The final Vostok core in 1989 approached 2540 m. Here we present and discuss the initial CO2 record obtained to 2340 m. A combination of static head-space extraction and stripping the remaining dissolved gas was followed by gas-chromatographic analysis. The obtained data show the “warm” maxima indicated by CO2 ice core content at 2280 m. The link between the process of air capture and release during the snowflake formation, snow accumulation, metamorphism, and sintering was considered. It was shown that the carbon ionic species, which were trapped during the snowflake formation, might be the cause for the discrepancy between the CO2 measurements by “wet” and “dry” techniques. The possible mechanism at the Younger Dryas signal is also considered.


Camp Century Vostok Station Byrd Station 34th Soviet Antarctic Expedition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnola, I.M., D. Raynaud, A. Neftel, and H. Oeschger. 1983. Comparasion of CO, measurements by two laboratories on air from bubbles in polar ice. Nature 303:410–413.CrossRefGoogle Scholar
  2. 2.
    Barnola, I.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160,000 years record of atmospheric CO,. Nature 329:408–414.CrossRefGoogle Scholar
  3. 3.
    Blanchard, D.C., and A.H. Woodcock. 1957. Bubble formation and modification in the Sea and its Meteorological Significance. Tellus 9:145–158.CrossRefGoogle Scholar
  4. 4.
    Broecker, W.S., D.M. Peteet, and D. Rind. 1985. Does the ocean-atmosphere system have more than one stable mode of operation. Nature 315:21–26.CrossRefGoogle Scholar
  5. 5.
    Broecker, W.S., D.M. Peteet, and D. Rind. 1983. Carbon dioxide sub-group of the Joint panel on oceanographic tables and standards, Report of Meeting (Miami, Florida, 21–23 September 1983), UNESCO.Google Scholar
  6. 6.
    Coachman, L.K., E. Hemmingsen, and P.F. Scholander. 1956. Gas enclosures in a temperate glacier. Tellus 8:415–423.CrossRefGoogle Scholar
  7. 7.
    Cragin, J.H., M.M. Herron, C.C. Langway Jr., and G. Klouda. 1977. Interhemispheric comparison of changes in the composition of atmospheric precipitation during the late Cenozoic Era. In M.J. Dunbar (ed.), Polar Oceans, Arctic Institute of North America, pp. 617–631.Google Scholar
  8. 8.
    De Angelis, M., N.I. Barkov, and V.N. Petrov. 1987. Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core. Nature 325:318–320.CrossRefGoogle Scholar
  9. 9.
    Fairbanks, R.G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642.CrossRefGoogle Scholar
  10. 10.
    Fireman, E.L., and T.L. Norris. 1982. Ages and composition of gas trapped in Allen Hills and Byrd core ice. Earth Planetary Sci. Lett. 60:339–350.CrossRefGoogle Scholar
  11. 11.
    Graedel, T.E. 1984. Effect of below-cloud gas scavenging on raindrop chemistry over remote ocean regions. Atmosph. Environ. 18:1835–1842.Google Scholar
  12. 12.
    Hammer, C.U., H.B. Clausen, and W. Dansgaard. 1980. Greenland ice sheet evidence of past-glacial volcanism and its climatic impacts. Nature 288:230–235.CrossRefGoogle Scholar
  13. 13.
    Hemmingsen, E. 1959. Permiation of gases through ice. Tellus 11:354–359.Google Scholar
  14. 14.
    Herron, M.M., and C.C. Langway Jr. 1985. Chloride, nitrate, and sulfate in the Dye 3 and Camp Century, Greenland Ice Cores. In C.C. Langway, Jr., H. Oeschger, and W. Dasgaard (eds.), Greenland Ice Core: Geophysics, Geochemistry, and the Environment. American Geophysical Union, Washington, DC, pp. 71–76.Google Scholar
  15. 15.
    Horibe, Y., K. Shigehara, and C.C. Langway Jr. 1985. Chemical, and isotopic composition of air inclusions in a Greenland, ice core. Earth Planetary Sci. Lett. 73:207–210.CrossRefGoogle Scholar
  16. 16.
    Imbrie, J., I.D. Hayes, D.C. Martinson, A. McIntyre, A.C. Mix, I.I. Morley, N.G. Pisias, W.L. Prell, and N.J. Shackleton. 1984. The orbital theory of Pleistocene Climate. In A.L. Berger (ed.), Milancovich and Climate, D. Reidel, London, pp. 269–305.Google Scholar
  17. 17.
    Rasool, S.I. (ed.). 1973. Chemistry of the Lower Atmosphere, Plenum Press, New York, London.CrossRefGoogle Scholar
  18. 18.
    Lipenkov, V. Ya., and A.N. Salamatin. 1986. Volume relaxation of the ice core from the bore hole at Vostok Station. Antarctica 30:59–71 (in Russian).Google Scholar
  19. 19.
    Lorius, C., N.I. Barkov, I. Jouzel, Y.S. Korotkevich, V.M. Kotlyakov, and C. Raynaud. 1988. Antarctic Ice Core: CO, and Climatic Change over the last Climatic Cycle. EOS 69:681–684.CrossRefGoogle Scholar
  20. 20.
    Lorius, C., I. Jouzel, D. Raynaud, J. Hansen, and H. Le Treut. 1990. The ice-core record: climate sensitivity and future greenhouse warming. Nature 347:139–145.CrossRefGoogle Scholar
  21. 21.
    Maeno, N., and D. Kuroiwa. 1967. Methamorphism of air bubbles in a snow crystal. J. Glaciology 6:561–564.Google Scholar
  22. 22.
    Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn. 1982. Ice core sample measurements give atmospheric CO, content during the past 40,000 years. Nature 295:220–223.CrossRefGoogle Scholar
  23. 23.
    Neftel, A., H. Oeschger, T. Staffelbach, and B. Stauffer. 1988. CO, record in the Byrd ice core 50,000–5,000 years BP. Nature 331:609–611.CrossRefGoogle Scholar
  24. 24.
    Oeschger, H. 1985. The contribution of ice core studies to the understanding of environmental processes. In C.C. Langway, Jr., H. Oeschger, and W. Dansgaard (eds.), Greenland Ice Core: Geophysics, Geochemistry, and the Environment. American Geophysical Union, Washington, DC, pp. 9–17.CrossRefGoogle Scholar
  25. 25.
    Petit, J. R., M. Briat, and A. Royer. 1981. Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293:391–394.CrossRefGoogle Scholar
  26. 26.
    Petrov, V.N. 1975. The Atmospheric Supply of Antarctic Ice Covering, Gidrometeoizdat Press, Leningrad (in Russian).Google Scholar
  27. 27.
    Raynaud, D., and R. Delmas. 1977. Composition des gaz contenus, dans la glace polaire. IAHS-AISH Publ. 118:377–381.Google Scholar
  28. 28.
    Raynaud, D., and B. Lebel. 1979. A total gas content and surface elevation of polar ice sheets. Nature 281:289–291.CrossRefGoogle Scholar
  29. 29.
    Raynaud, D., and I.M. Whillans. 1982. Air content of the Byrd core and past changes in the West Antarctic ice sheet. Annals Glaciology 3:269–273.Google Scholar
  30. 30.
    Raynaud, D., R. Delmas, I.M. Auscencio, and M. Legrand. 1982. Gas extraction from polar ice cores: a critical issue for studying the evolution of atmospheric CO, and ice sheet surface elevation. Annals Glaciology 3:265–268.Google Scholar
  31. 31.
    Raynaud, D. 1983. The total gas content in polar ice core. In G. de Q. Robin (ed.), The climatic Record in Polar Ice Sheets. Cambridge University Press, Cambridge, PP.00–00.Google Scholar
  32. 32.
    Rasmussen, R.A., and M.A.K. Khalil. 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient. J. Geophys. Res. 89:11599–11605.CrossRefGoogle Scholar
  33. 33.
    Robin, G. de Q. 1983. Ice sheets: isotopes and temperatures. In G. de Q. Robin (ed.), The Climatic Record in Polar Ice Sheets Cambridge University Press, Cambridge, pp. 1–18.Google Scholar
  34. 34.
    Scholander, P.F., E.A. Hemmingsen, L.K. Coachman, and D.C. Nutt. 1961. Composition of gas bubbles in Greenland icebergs. J. Glaciology 3:813–822.Google Scholar
  35. 35.
    Semiletov, I.P., A.M. Gusev, N.I. Barkov, N.V. Pozdnyakov, and V. Ya Lipenkov. 1989. Carbon dioxide palaeovariations in the antarctic ice cores. Reports of the Academy of Sciences, USSR (Doklady Akademii Nauk SSSR) 309:196–199.Google Scholar
  36. 36.
    Semiletov, I.P. 1992. On palaeovariations of atmosphere composition in the ice core air inclusions. Antarctica, issue 31 (in Russian).Google Scholar
  37. 37.
    Shackleton, N.J., M.A. Hall, J. Line, and C. Shuxi. 1983. Carbon isotope data in core V 19–30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322.CrossRefGoogle Scholar
  38. 38.
    Shoji, H., and C.C. Langway Jr. 1982. Air hydrate inclusions in fresh ice core. Nature 298:548–550.CrossRefGoogle Scholar
  39. 39.
    Stauffer, B., and W Berner. 1978. CO2 in natural ice. J. Glaciology 21:291–300.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • I. P. Semiletov
    • 1
  1. 1.Far Eastern Branch, Academy of Sciences, RussiaPacific Oceanological InstituteVladivostokRussia

Personalised recommendations