A General Purpose Xputer Architecture derived from DSP and Image Processing

  • A. Ast
  • R. W. Hartenstein
  • H. Reinig
  • K. Schmidt
  • M. Weber
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 257)

Abstract

This paper illustrates a novel class of computational devices called Xputers, which are by up to several orders of magnitude more efficient than the von Neumann paradigm of computers. The paper shows how the new paradigm is partly derived from accelerating features of image processors and digital signal processors,and it illustrates xputer execution mechanisms and associated programming techniques by means of simple algorithm examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Bertin, D. Roncin, J. Vuillemin: Introduction to Programmable Active Memories; Int’l Conf. on Systolic Arrays, Kilarney, Ireland, 1989Google Scholar
  2. [2]
    D. Causley, J. Z. Young: The Flying Spot Microscope - Use in Particle Analysis, Research 8, p.430–434, 1953.Google Scholar
  3. [3]
    M. Christ: Texas Instruments TMS 320C25; Signalprozessoren 3; Oldenbourg-Verlag 1988Google Scholar
  4. [4]
    M. D’Amour, et al.: ASIC Emulation cuts Design Risk; High Performance Systems, Oct. 1989Google Scholar
  5. [5]
    G. P. Dinneen: Programming Pattern Recognition, Proceedings of the Western Joint Computer Conference, Los Angeles, 1955.Google Scholar
  6. [6]
    J. A. B. Fortes, K. S. Fu, B.J. Wah, “Systematic Approaches for Algorithmically Specified Systolic Arrays”, in Computer Architecture: Concepts and Systems, (ed.: V. Milutinovic), North Holland, 1988.Google Scholar
  7. [7]
    R. Freeman: User-Programmable Gate Arrays; IEEE Spectrum, Dec.1988.Google Scholar
  8. [8]
    D. Gajski, D. Padua, D. Kuck, R. H. Kuhn, “A Second Opinion on Data Flow Machines and Languages”, Computer, pp. 58–69,Febr. 1982.Google Scholar
  9. [9]
    F. A. Gerrtisen: Design and Implementation of the Delft Image Processor DIP-1; Ph.D Thesis, Dept. Electrical Engineering, Delft University, 1981.Google Scholar
  10. [10]
    M. J. E. Golay: Apparatus for counting bi-nucleate lymphocytes in blood, U.S. Patent 3,214,574, 1965.Google Scholar
  11. [11]
    S. B. Gray: Local Properties of Binary Images in Two Dimensions; IEEE Trans. on Computers, C-20 (5), 1971.Google Scholar
  12. [12]
    M. D. Graham, P. E. Norgren: The diffa Analyzer - A Parallel/Serial Golay Image Processor; in: Real-Time Medical Image Processing (Once, Preston, Rosenfeld eds.), Plenum Press, New York 1980.Google Scholar
  13. [13]
    R. W. Hartenstein, A. G. Hirschbiel, K. Lemmert, K. Schmidt, M. Weber: A Novel Paradigm of Parallel Computation and its Use to Implement Simple High Performance Hardware; Int’l Conf. on Information Technology, Tokyo, Japan, Oct. 1990.Google Scholar
  14. [14]
    R. W. Hartenstein, A. G. Hirschbiel, K. Lemmert, K. Schmidt, M. Weber, “The Machine Paradigm of Xputers and its Application to Digital Signal Processing”, Proc. of 1990 International Conference on Parallel Processing, St. Charles, Oct. 1990.Google Scholar
  15. [15]
    R. Hartenstein, A. Hirschbiel, M. Weber: MoM - Map Oriented Machine; in: Ambler et al.: Hardware Accelerators, Adam Hilger, Bristol 1988.Google Scholar
  16. [16]
    R. Hartenstein, G. Koch: The universal bus considered harmful; in: (eds.) R. Hartenstein, R. Zaks: Microarchitecture of Computer Systems, North Holland, 1975Google Scholar
  17. [17]
    R.W. Hartenstein, R. Hauck, A.G. Hirschbiel, W. Nebel, M. Weber: PISA - A CAD package and special hardware for pixel oriented layout analysis, Proc. ICCAD 1984Google Scholar
  18. [18]
    J. M. Herron, J. Farley, K. Preston Jr., H. Seliner: A General-Purpose High-Speed Logical Transform Image Processor; IEEE Transactions on Computers, C-31(8), 1982.Google Scholar
  19. [19]
    A. G. Hirschbiel: A Novel Processor Architecture based on Auto Data Sequencing and Low Level Parallelism; Ph. D. dissertation, Universität Kaiserslautern, 1991Google Scholar
  20. [20]
    P. A. Kaufmann: Wanted: Tools for Validation, Iteration; Computer Design, Dec.1989Google Scholar
  21. [21]
    R. A. Kirsch: Experiments in Processing Information with a Digital Computer, Proc. Eastern Joint Computer Conference, Washington, 1957.Google Scholar
  22. [22]
    B. Kruse, P. E. Danielsson, Gudmundsson: From Picap I to Picap II; in Special Computer Architectures for Pattern Processing (K.S. Fu, T. Ichikawa, eds.), CRC Press, Boca Raton, 1982.Google Scholar
  23. [23]
    B. Kruse: A Parallel Picture Processing Machine, IEEE Computer C-22(12), 1973.Google Scholar
  24. [24]
    S.-Y. Kung, VLSI Array Processors; Prentice-Hall, 1988.Google Scholar
  25. [25]
    K. Lemmert, SYS3 - a Systolic Synthesis System around KARL, Ph. D. dissertation, Kaiserslautern University, 1989.Google Scholar
  26. [26]
    C. Lengauer, On the Projection Problem in Systolic Design; report, Carnegie-Mellon University, CMU-CS-88–102, Pittsburgh, 1988Google Scholar
  27. [27]
    D. I. Moldovan, “ADVIS: A Software Package for the Design of Systolic Arrays”, IEEE Transactions on Computer Aided Design, pp. 33–40, Jan., 1987.Google Scholar
  28. [28]
    N. N. (Motorola): DSP 56000/56001 Digital Signal Processor User’s Manual; Motorola Corp., 1989.Google Scholar
  29. [29]
    R. Nawrath, J. Serra: Quantitative Image Analysis: Theory and Instrumentation; Micros. Acta 82 (2) p.101–111, 1979.Google Scholar
  30. [30]
    N. Petkov: Systolische Algorithmen und Arrays, Akademischer Verlag 1989.Google Scholar
  31. [31]
    N. N. (Plessey): Quickgate (Product Overview); Plessey Semiconductors, Swindon, U.K., May, 1990.Google Scholar
  32. [32]
    K. Preston Jr.: The CELLSCAN system - A leucocyte pattern analyzer, Proc. Western Joint Comput. Conf., 1961Google Scholar
  33. [33]
    K. Preston Jr.: Use of the Golay Logic Processor in pattern-recognition studies using hexagonal neighborhood logic; Proc. Symp. Comput. Automata, Polytechnic Press, New York 1971.Google Scholar
  34. [34]
    K. Preston Jr.: Cellular Architectures for Image Processing; Int’l Conference on Computer Design: VLSI in Comput., New York, IEEE Publ. no. CH1935–6/83, 1983.Google Scholar
  35. [35]
    K. Preston Jr., M. J.B. Duff: Modern Cellular Automata, Theory and Applications; Plenum Press, New York 1984.MATHGoogle Scholar
  36. [36]
    P. Quinton, Y. Robert: Systolic Algorithms & Architectures, Prentice Hall 1989.Google Scholar
  37. [37]
    H. J. Siegel: Interconnection networks for large-scale parallel processing; McGraw-Hill, New York, 1990Google Scholar
  38. [38]
    Thomas W. Starnes: MC68000: Philosophie und praktische Realisierung einer 16/32-Bit_Mikroprozessorfamilie; Das 68000-Sonderheft, Franzis-Verlag, München 1985.Google Scholar
  39. [39]
    S. R. Sternberg: Cytocomputer real-time pattern recognition; Proceedings of the 8th Automatic Imagary Pattern Recognition Symposium, 1978Google Scholar
  40. [40]
    S. H. Unger: A Computer Oriented Toward Spatial Problems; Proc. IRE 46, 1958.Google Scholar
  41. [41]
    M. Weber: An Application Development Method for Xputers; Ph. D. dissertation, Kaiserslautern University, 1990.Google Scholar
  42. [42]
    S. S. Wilson: One Dimensional SIMD Architectures - The AIS-5000; in Multicomputer Vision (Levialdi eds.), Academic Press, 1988Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. Ast
    • 1
  • R. W. Hartenstein
    • 1
  • H. Reinig
    • 1
  • K. Schmidt
    • 1
  • M. Weber
    • 1
  1. 1.Universität Kaiserslautern PostfachFachbereich InformatikKaiserslauternGermany

Personalised recommendations