Sol-Gel Optics pp 279-302 | Cite as

Doped Sol-Gel Films for Fiber Optic Chemical Sensors

  • M. R. Shahriari
  • J. Y. Ding
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 259)


In this chapter, a brief review is given of the research activities for the immobilization of organic macromolecules in glass networks by sol-gel methods. The emphasis is given to introduce recent progress by the authors and other researchers in the development of 2nd generation dye based fiber optic chemical sensors. In these sensors, sol-gel is utilized as a viable technique for the immobilization of organic dyes in highly stable silica substrates. The optically active silica substrate, doped with organic dyes, is then incorporated into optical fibers and used as chemical transducers. Different materials and processing aspects of the sol-gel technique and their applications in fiber optic chemical sensors will be addressed in this chapter.


Optical Intensity Chemical Durability Indicator Concentration Bromocresol Green Precursor Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brinker, C. J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc., New York, 1990, pp. 788–835.Google Scholar
  2. [2]
    Brinker, C.J., Clark, D.E. and Ulrich, D.R., eds., Better Ceramics Through Chemistry, North-Holland, New York, 1984.Google Scholar
  3. [3]
    Brinker, C.J., Clark, D.E. and Ulrich, D.R., eds., Better Ceramics Through Chemistry II, Mat. Res. Soc., Pittsburgh, 1986.Google Scholar
  4. [4]
    Brinker, C.J., Clark, D.E. and Ulrich, D.R., eds., Better Ceramics Through Chemistry III, Mat. Res. Soc., Pittsburgh, 1988.Google Scholar
  5. [5]
    Iler, R. K., The Chemistry of Silica, John Wiley and Sons, New York, 1979.Google Scholar
  6. [6]
    Bradley, D.C., Mehrotra, R.C. and Gaur, D.P., Metal Alkoxides, Academic Press, New York, 1978.Google Scholar
  7. [7]
    Hench, L.L. and Ulrich, D.R., eds., Science of Ceramic Chemical Processing, John Wiley and Sons, New York, 1986.Google Scholar
  8. [8]
    Avnir, D., DeMayo, P. and Ono, I.J. C. S. Chem. Comm.1109 (1978).Google Scholar
  9. [9]
    Avnir, D., Levy, D. and Reisfeld, R.J. Phys. Chem.88, 5956–5959 (1984).CrossRefGoogle Scholar
  10. [10]
    Levy, D., Reisfeld, R. and Avnir, D.Chem. Phys. Lett.109 [6], 593–597 (1984).CrossRefGoogle Scholar
  11. [11]
    Avnir, D., Kaufman, V.R. and Reisfeld, R.J. Non-Cryst. Solids74, 395–406 (1985).CrossRefGoogle Scholar
  12. [12]
    Grauer, Z., Avnir, D. and Yariv, S.Can. J. Chem.62, 1889 (1984).CrossRefGoogle Scholar
  13. [13]
    Tani, T., Namikawa, H. and Arai, K.J. Appl. Phys.58 [9], 3559–3565 (1985).CrossRefGoogle Scholar
  14. [14]
    Kaufman, V.R., Levy, D. and Avnir, D.J. Non-Cryst. Solids82, 103–109 (1986).CrossRefGoogle Scholar
  15. [15]
    Huang, H.H., Orler, B. and Wilkes, G.L.Macromolecules20, 1322–1330 (1987).CrossRefGoogle Scholar
  16. [16]
    Kobayashi, Y., Imai, Y. and Kurakawa, Y.J. Mater. Sci. Lett.7, 1148–1150 (1988).CrossRefGoogle Scholar
  17. [17]
    Levy, D. and Avnir, D.J. Phys. Chem.92, 4734–4738 (1988).CrossRefGoogle Scholar
  18. [18]
    Tanaka, H., Takahashi, J., Tsuchiya, J., Kobayashi, Y. and Kurokawa, Y.J. Non-Cryst. Solids109, 164–170 (1989).CrossRefGoogle Scholar
  19. [19]
    Ikoma, S., Takano, S., Nomoto, E. and Yokoi, H.J. Non-Cryst. Solids113, 130–136 (1989).CrossRefGoogle Scholar
  20. [20]
    Pouxviel, J.C., Dunn, B. and Zink, J.I.J. Phys. Chem.93, 2134–2139 (1989).CrossRefGoogle Scholar
  21. [21]
    Slama-Schwok, A., Avnir, D. and Ottolenghi, M.J. Phys, Chem.93, 7544–7547 (1989).CrossRefGoogle Scholar
  22. [22]
    Badini, G.E., Grattan, K.T.V., Palmer, A.W. and Tseung, A.C.C., “Development of pH-sensitive Substrates for Optical Sensor Applications,” Springer Proceedings in Physics, Vol. 44, pp. 436–442, 1989.CrossRefGoogle Scholar
  23. [23]
    Levy, D., Einhorn, S. and Avnir, D.J. Non-Cryst. Solids113, 137–145 (1989).CrossRefGoogle Scholar
  24. [24]
    Ikoma, S., Kawakita, K. and Yokoi, H.J. Non-Cryst. Solids122, 183–192 (1990).CrossRefGoogle Scholar
  25. [25]
    Preston, D., Pouxviel, J., Novinson, T., Kaska, W.C., Dunn, B. and Zink, J. I.J. Phys. Chem.94, 4167–4172 (1990).CrossRefGoogle Scholar
  26. [26]
    Kohjiya, S., Ochial, K. and Yamashita, S.J. Non-Cryst. Solids119, 132–135 (1990).CrossRefGoogle Scholar
  27. [27]
    Zusman, R., Rottman, C., Ottolenghi, M. and Avnir, D.J. Non-Cryst. Solids122, 107–109 (1990).CrossRefGoogle Scholar
  28. [28]
    MacCraith, B.D., Ruddy, V. and Potter, C.Electronics Lett.27 [14], 1247–1248 (1991).CrossRefGoogle Scholar
  29. [29]
    Ding, J. Y., Shahriari, M.R. and Sigel, Jr., G. H., Electronics Lett., 27 [17],1560–1561 (1991).CrossRefGoogle Scholar
  30. [30]
    Harper, G. P.Anal. Chem.47 [2], 348–351 (1975).CrossRefGoogle Scholar
  31. [31]
    Allen, N.S. and McKeller, J.F., Photochemistry of dyed and pigmented polymers, Applied Science Publ., London, 1980.Google Scholar
  32. [32]
    Ding, J.Y. and Day, D.E.J. Mater. Res.6 [1], 168–174 (1991).CrossRefGoogle Scholar
  33. [33]
    Scriven, L.E., in Better Ceramics through Chemistry III, eds, Brinker,C.J., Clark, D.E. and Ulrich, D.R., (Mat. Res. Soc., Pittsburgh, Pa, 1988), pp. 717–729.Google Scholar
  34. [34]
    Speirs, R.P., Subaraman, C.V. and Wilkinson, W.L.Chem. Eng. Sci.29, 389–396 (1974).CrossRefGoogle Scholar
  35. [35]
    Landau, L.D. and Levich, B.G., Acta Physiochim, U.R.S.S.17(1942), 42–54.Google Scholar
  36. [36]
    Laitinen, H.A., Chemical Analysis, McGraw-Hill Book Co. Inc. New York, pp. 50–55, 1960.Google Scholar
  37. [37]
    Kolthoff, I.M. and Rosenblum, C., Acid-Base Indicators, Chap. 7, The Macmillan Co., New York, 1937.Google Scholar
  38. [38]
    Klotz, I.M.J. Am. Chem. Soc.69, 373–399 (1947).Google Scholar
  39. [39]
    Pitzer K.S.J. Am. Chem. Soc.59, 23–65 (1937).CrossRefGoogle Scholar
  40. [40]
    Everett, D.H. and Wynne-Jones, W.F.K.Trans. Faraday Soc.35, 1380 1939).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. R. Shahriari
    • 1
  • J. Y. Ding
    • 1
  1. 1.Fiber Optic Materials Research ProgramRutgers-The State University of New JerseyPiscataway

Personalised recommendations