Skip to main content
  • 244 Accesses

Abstract

The architecture of an FPGA is determined, in large part, by the programmable switch technology used to configure it. Many such technologies have been considered for use in FPGAs, including laser programming [Smith] [Allen], pass transistors controlled by SRAM [Hsieh] [Carter] or EPROM cells [Wong] and antifuses [Gerzberg] [Hamdy] [Whitten].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ahrens, et. al., An FPGA Architecture Optimized for High Densities and Reduced Routing Delay,Proceedings Custom Integrated Circuits Conference, July 1990.

    Google Scholar 

  2. D. Allen, R. Goldenberg, Design Aids and Test Results for Laser-Programmable Logic Arrays, Proceedings. International Conference, on Computer Design, 1990, pp. 386–390.

    Google Scholar 

  3. J. Birkner et al., A Very High-Speed Field Programmable Gate Array Using Metal-to-Metal Antifuse Programming Elements, Proceedings Custom Integrated Circuits Conference, May 1991.

    Google Scholar 

  4. R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang. MIS: A Multiple-Level Logic Optimization System. IEEE Transactions on CAD, Nov. 1987.

    Google Scholar 

  5. W. Carteret al, A User Programmable Reconfigurable Gate Array, in Proceedings of Custom Integrated Circuits Conference, pp. 233–235, 1986.

    Google Scholar 

  6. J. Chen et al, A Modular 0.8 urn Technology for High Performance Dieletric Antifuse Field Programmable Gate Arrays, International Symposium on VLSI Technology, Systems, and Applications, May 1993, pp. 160–164.

    Google Scholar 

  7. S. Chiang, R. Wang, J. Chen, K. Hayes, J. McCollum, E. Hamdy, Hu. Oxide-Nitride-Oxide Antifuse Reliability, International Reliability Physics Symposium., March 1990, pp. 186–192.

    Google Scholar 

  8. S. Chiang, K. Hayes. Act 1010/1020 Reliability Report. Actel Corporation, Sunnyvale, CA, April 1990.

    Google Scholar 

  9. K. El Ayat, et. al. A CMOS Electrically Configurable Gate Array. IEEE J. Solid-State Circuits, Vol. 24, No. 3, June, 1989, pp. 752–762.

    Article  Google Scholar 

  10. A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat, and A. Mohsen. An Architecture for Electrically Configurable Gate Arrays. IEEE J. Solid-State Circuits, Vol. 24, No. 2, April, 1989, pp. 394–398.

    Article  Google Scholar 

  11. A. El Gamal, J. Greene, V. Roychowdhury. Segmented Channel Routing is Nearly as Efficient as Channel Routing (and Just as Hard). Proceedings. VLSI Conference, Santa Cruz, A, March 1991.

    Google Scholar 

  12. A. El Gamal. Two Dimensional Stochastic Model for Interconnections in Master Slice Integrated Circuits. IEEE Trans, on Circuits and Systems, CAS-28, 127-138, Feb. 1981.

    Google Scholar 

  13. L. Gerzberg. U.S. Patent 4,590,589, 1986.

    Google Scholar 

  14. H. Graham, D. Seltz. Electronically Programmable Gate Array Having Programmable Interconnect Lines, U.S. Patent 4,786,904, Nov. 22, 1988.

    Google Scholar 

  15. J. Greene, V. Roychowdhury, S. Kaptanoglu, A. El Gamal, Segmented Channel Routing, Proceedings. Design Automation Conference., Orlando, Rorida, Association, for Computing Machinery, June 1990.

    Google Scholar 

  16. E. Hamdy, J. McCollum, S. Chen, S. Chiang, S. Eltoukhy, J. Chang, T. Speers,. Mohsen. Dielectric Based Antifuses for Logic and Memory ICs, IEDM Tech. Digest, pp. 786–789, 1988.

    Google Scholar 

  17. A. Hashimoto, J. Stevens. Wire Routing by Optimizing Channel Assignment within Large Apertures. Proceedings. 8th IEEE Design Automation Workshop, 1971.

    Google Scholar 

  18. [Holmberg], et al. U.S. Patents 4,499,557, 1985 and 4,599,705, 1986.

    Google Scholar 

  19. H. Hsieh, et. al., Third-Generation Architecture Boosts Speed and Density of Field-Programmable Gate Arrays, Proceedings. 1990 Custom Integrated Circuits Conference., May 1990, pp. 31.2.1–32.2.7.

    Google Scholar 

  20. K. Karplus, AMAP: a Technology Mapper for Selector-based Field-Programmable Gate Arrays, Proceedings of the 28th Design Automation Conference, June 1991, pp. 244–247.

    Google Scholar 

  21. Lim et al. U.S. Patent 4,569,121, 1986. Stacy et al. U.S. Patent 4,569,120. 1986.

    Google Scholar 

  22. M. Lorenzetti, D. Baeder. Routing. Chapter 5 in Physical Design Automation of VLSI Systems, B. Preas and M. Lorenzetti, eds., Benjamin Cummings, 1988.

    Google Scholar 

  23. HCMOS Gate Array Databook and Design Manual, LSI Logic Corporation, October 1986.

    Google Scholar 

  24. F. Mailhot, G. De Micheli. Technology Mapping Using Boolean Matching and Don’t Care Sets, preprint, 1990.

    Google Scholar 

  25. C. Marr, Logic Array Beats Development Time Blues, Electronic System Design Magazine., Nov. 1989, pp. 38–42.

    Google Scholar 

  26. R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, A. Sangiovanni-Vincentelli. Logic Synthesis for Programmable Gate Arrays. Proceedings. 27th ACMDesign Automation Conference., 1990.

    Google Scholar 

  27. B. Preas, P. Karger. Placement, Assignment and Floorplanning. Chapter 4 in Physical Design Automation of VLSI Systems, B. Preas and M. Lorenzetti, eds., Benjamin Cummings, 198.

    Google Scholar 

  28. B. Roesner. U.S. Patents 4,424,579 and 4,442,507, 1984.

    Google Scholar 

  29. J. Rose, R. Francis, D. Lewis, P. Chow. Architecture of Programmable Gate Arrays: The Effect of Logic Block Functionality on Area Efficiency. IEEE Journal of Solid State Circuits, Vol. 25, No. 5, pp. 1217–1225, October 1990.

    Article  Google Scholar 

  30. R. Rudell, R. Segal. Logic Synthesis Can Help in Exploring Design Choices, 1989 Semi-custom Design Guide, CMP Publications, Manhasset, NY.

    Google Scholar 

  31. J. Schlageter et all, An Advanced Sub-Micron Architecture for 10 Intensive Applications, Proceeding of the 1993 Compcon conference, 1993, pp. 362–366.

    Google Scholar 

  32. S. Singh, J. Rose, D. Lewis, K. Chung, P. Chow, Optimization of Field-Programmable Gate Array Logic Block Architecture for Speed, Proceedings of the 1991 CICC Conference, 1991, pp. 6.1.1–6.1.6.

    Google Scholar 

  33. J. F. Smith, et. al., Laser-Induced Personalization and Alterations of LSI and VLSI Circuits, Proceedings of. 1st International Laser Processing Conference., Anaheim, Calif., Laser Institute of America, Nov. 16, 1981.

    Google Scholar 

  34. H. Stopper, et al. U.S. Patent 4,847, 732, 1989.

    Google Scholar 

  35. Walters, S., Troudet, T.; Digital Phase-Locked Loop with Jitter Bounded, IETransactions on Circuits and Systems, VOL. 36, NO. 7, July 1989.

    Google Scholar 

  36. T. Whitney and J. Schlageter, A New High Performance Field Programmable Gate Array Family, Proceedings of 1993 International Conference on Computer Design, October 1993.

    Google Scholar 

  37. R. Whitten, R. Bechtel, M. Thomas, H.T. Chua, A. Chan, J. Birkner, European Patent Application No. 90309731.9, May 9, 1990.

    Google Scholar 

  38. S. Wong, H. So, J. Ou, J Costello, A 5000-Gate CMOS EPLD with Multiple Logic and Interconnect Arrays, Proceedings. 1989 Custom Integrated Circuits Conference., May 1989, pp. 5.8.1–5.8.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCarty, D., Whitney, T. (1994). Antifuse Programmed FPGAs. In: Trimberger, S.M. (eds) Field-Programmable Gate Array Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2742-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2742-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6183-1

  • Online ISBN: 978-1-4615-2742-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics