Skip to main content

Communication Complexity and Lower Bounds for Threshold Circuits

  • Chapter
Theoretical Advances in Neural Computation and Learning

Abstract

The study of threshold circuits is interesting for several reasons. First, constant-depth threshold circuits are closely related to feed-forward neural networks, a widely studied model. The main difference is that while a threshold gate has Boolean inputs and output, a “neuron” in a neural network can have real numbers as inputs and typically outputs a continuous approximation of a step-function. However, Maass, Schnitger, and Sontag show in [MSS91] that when one considers the computation of Boolean functions the two models are equally powerful (within polynomial factors) (see also Chapter 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and J. Bruck. Explicit constructions of depth-2 majority circuits for comparison and addition. Technical Report RJ 8300 (75661), IBM Research Division, August 1991. To appear in SIAM J. Disc. Math.

    Google Scholar 

  2. A. E Andreev. On a method for obtaining more than quadratic effective lower bounds for the complexity of π-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

    MATH  Google Scholar 

  3. N. Alon, J. Spencer, and P. ErdHos. The Probabilistic Method. John Wiley & Sons, Inc., 1992.

    Google Scholar 

  4. L. Babai, P. Franki, and J. Simon. Complexity classes in communication complexity theory. In Proc. 27th IEEE Symposium on Foundations of Computer Science, pages 337–347, 1986.

    Google Scholar 

  5. L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard pseudorandom sequences. In Proc. 21st ACM Symposium on Theory of Computing, pages 1–11, 1989.

    Google Scholar 

  6. J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM J. Disc. Math., 3(2):168–177, May 1990.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Beigel and J. Tarui. On ACC. In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 783–792, 1991.

    Google Scholar 

  8. B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. In Proc. 26th IEEE Symposium on Foundations of Computer Science, pages 429–442, 1985.

    Google Scholar 

  9. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM J. Computing, 13:423–439, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Feige, P. Peleg, P. Raghavan, and E. Upfal. Computing with unreliable information. In Proc. 22nd ACM Symposium on Theory of Computing, pages 128–137, 1990.

    Google Scholar 

  11. Y. Freund. Boosting a weak learning algorithm by majority. In Workshop on Computational Learning Theory, pages 202–216, 1990.

    Google Scholar 

  12. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierarchy. Math. System Theory, 17:13–27, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Goldmann and J. Håst ad. A simple lower bound for monotone clique using a communication game. Information Processing Letters, 41(4):221–226, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Goldmann, J. Håstad, and A. Razborov. Majority gates vs. general weighted threshold gates. In Proc. 7th Annual Structure in Complexity Theory Conference, pages 2–13, 1992. To appear in Computational Complexity.

    Google Scholar 

  15. M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits. In Proc. 25th ACM Symposium on Theory of Computing, pages 551–560, 1993.

    Google Scholar 

  16. M. Goldmann. On the power of a threshold gate at the top. Manuscript, 1993.

    Google Scholar 

  17. F. Green. An oracle separating ⊕P from PP PH. In Proc. 5th Annual Structure in Complexity Theory Conference, pages 295–298, 1990.

    Google Scholar 

  18. H. D. Gröger and G. Turán. On linear decision trees computing Boolean functions. In Proc. 18th International Colloquium on Automata, Languages and Programming, pages 707–718. Springer-Verlag, 1991.

    Google Scholar 

  19. J. Håstad. Computational Limitations of Small-Depth Circuits. The MIT Press, 1986.

    Google Scholar 

  20. J. Håstad. On the size of weights for threshold gates. To appear in SIAM. J Disc. Math., 1992.

    Google Scholar 

  21. J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. Computational Complexity, 1(2): 113–129, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold circuits of bounded depth. In Proc. 28th IEEE Symposium on Foundations of Computer Science, pages 99–110, 1987.

    Google Scholar 

  23. M. Krause and P. Pudlak. On the computational power of threshold circuits with MOD-gates. Manuscript, 1993.

    Google Scholar 

  24. B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set intersection. In Proc. 2nd Annual Structure in Complexity Theory Conference, pages 41–49, 1987.

    Google Scholar 

  25. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Disc. Math., 3(2):255–265, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Krause and S. Waack. Variation ranks of communication matrices and lower bounds for depth two circuits having symmetric gates with unbounded fan-in. In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 777–782, 1991.

    Google Scholar 

  27. L. Lovász. Communication complexity: A survey. In B Korte, L. Lovász, H. J. Prömel, and A. Schrijver, editors, Paths, Flows, and VLSI-Layout Springer-Verlag, 1990.

    Google Scholar 

  28. W. Maass, G. Schnitger, and E. Sontag. On the computational power of sigmoid versus boolean threshold circuits. In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 767–776, 1991.

    Google Scholar 

  29. S. Muroga. Threshold Logic and its Applications. Wiley-Interscience, 1971.

    Google Scholar 

  30. J. von Neumann. Zur Theorie der Gesellschaftspiele. Math. Ann., 100:295–320, 1928.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Newman. Private vs. common random bits in communication complexity. Information Processing Letters, 39(2):67–71, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  32. N Nisan. The communication complexity of threshold gates. In D. Miklos, V. T. Sos, and T. Szonyi, editors, Combinatorics, Paul ErdHos is Eighty, Volume I, pages 301–315, 1993. Published by Janos Bolyai Mathematical Society, Budapest.

    Google Scholar 

  33. G. Owen. Game theory. Academic press, second edition, 1982.

    Google Scholar 

  34. A. A. Razborov. Lower bounds on the size of bounded-depth networks over a complete basis with logical addition. Mat. Zametki, 41(4):598–607, 1987. (in Russian); English translation in Math. Notes of the Academy of Sciences of the USSR 41(4):333-338, 1987.

    MathSciNet  Google Scholar 

  35. A. A. Razborov. On the distributional complexity of disjointness. In Proc. 17th International Colloquium on Automata, Languages and Programming, pages 249–253, 1990. To appear in Theoretical Computer Science.

    Google Scholar 

  36. A. A. Razborov. On small depth threshold circuits. In Proc. 3rd Scandinavian Workshop on Algorithm Theory, pages 42–52. Springer-Verlag, 1992. Lecture Notes in Computer Science 621.

    Google Scholar 

  37. R. Raz and A. Wigderson. Probabilistic communication complexity of boolean relations. InProc. 30th IEEE Symposium on Foundations of Computer Science, pages 562–567, 1989.

    Google Scholar 

  38. R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. In Proc. 22nd ACM Symposium on Theory of Computing, pages 287–292, 1990.

    Google Scholar 

  39. A. Razborov and A. Wigderson. nΩ(log n) lower bounds on the size of depth 3 threshold circuits with AND gates at the bottom. Information Processing Letters, 45(6):303–307, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Roychowdhury, K.-Y. Siu, and A. Orlitsky. Lower bounds on threshold and related circuits via communication complexity. To appear in IEEE Trans. Information Theory, 1993.

    Google Scholar 

  41. K.-Y. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAM J. Disc. Math., 4:423–435, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  42. K.-Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth-efficient neural networks for division and related problems. IEEE Trans. Information Theory. Vol. 39, No. 3, pp. 946–956, May 1993.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. R. Smith. Bounds on the number of threshold functions. IEEE Trans. Electronic Computers, EC-15:368–369, 1966.

    Article  Google Scholar 

  44. R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proc. 19th ACM Symposium on Theory of Computing, pages 77–82, 1987.

    Google Scholar 

  45. R. Smolensky. On interpolation by analytic functions with special properties and some weak lower bounds on the size of circuits with symmetric gates. In Proc. 31st IEEE Symposium on Foundations of Computer Science, pages 628–631, 1990.

    Google Scholar 

  46. K. Y. Siu and V. Roychowdhury. On optimal depth threshold circuits for multiplication and related problems. To appear in SIAM J. Disc. Math., May 1994.

    Google Scholar 

  47. C. D. Thompson. Area-time complexity for VLSI. In Proc. 11th ACM Symposium on Theory of Computing, pages 81–88, 1979.

    Google Scholar 

  48. A. C. Yao. Some complexity questions related to distributive computing. In Proc. 11th ACM Symposium on Theory of Computing, pages 209–213, 1979.

    Google Scholar 

  49. A. C. Yao. Lower bounds by probabilistic arguments. In Proc. 24th IEEE Symposium on Foundations of Computer Science, pages 420–428, 1983.

    Google Scholar 

  50. A. C. Yao. Separating the polynomial-time hierarchy by oracles. In Proc. 26th IEEE Symposium on Foundations of Computer Science, pages 1–10, 1985.

    Google Scholar 

  51. A. C. Yao. On ACC and threshold circuits. In Proc. 31st IEEE Symposium on Foundations of Computer Science, pages 619–627, 1990.

    Google Scholar 

  52. S. Yajima and T. Ibaraki. A lower bound on the number of threshold functions. IEEE Trans. Electronic Computers, EC-14:926–929, 1965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldmann, M. (1994). Communication Complexity and Lower Bounds for Threshold Circuits. In: Roychowdhury, V., Siu, KY., Orlitsky, A. (eds) Theoretical Advances in Neural Computation and Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2696-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2696-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6160-2

  • Online ISBN: 978-1-4615-2696-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics