A Finite Field Fourier Transform for Vectors of Arbitrary Length

  • Christoph G. Günther
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 276)

Abstract

Finite field Fourier transforms are of great interest in coding and cryptography. They are, in particular, used for describing BCH and RS codes in the spectral domain and for representing the solutions of recurrence equations used in stream ciphers. So far, finite field Fourier transforms have only been defined on vectors that have a length which is relatively prime to the characteristic of the field. The aim of the paper is to generalize this definition to arbitrary lengths. Many properties get a simpler interpretation with this approach.

Keywords

Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.E. Blahut Theory and Practice of Error Control Codes Addison-Wesley Publishing Company, Inc., 1983.Google Scholar
  2. [2]
    R.E. Blahut, “Transform techniques for error control,” IBM J. Res. and Dey. Vol. 23, pp. 299–315, May 1979.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    P. Mathys, “A generalization of the discrete Fourier transform in finite fields,” Proc. IEEE Symp. Inform. Theory San Diego (CA), Jan. 14–19, 1990.Google Scholar
  4. [4]
    S.R. Blackburn, “A Generalization of the Discrete Fourier Transform: Determining the Minimal Polynomial of a Periodic Sequence,” IEEE Trans. Inform. Theory (to appear).Google Scholar
  5. [5]
    C.G. Günther, “Fourier transform in cryptography and coding,” IEEE Workshop on Inform. Theory Bellagio, Italy, June 1987.Google Scholar
  6. [6]
    E. Lucas, “Théorie des fonctions numérique simplement périodiques” American Journal of Mathematics vol. 1, pp. 184–321, 1878MathSciNetCrossRefGoogle Scholar
  7. [7]
    H.F. Mattson and G. Solomon, “A new treatment of Bose Chaudhuri codes,” J. Soc. Indus. Appl. Math. Vol. 9, pp. 654–659, 1961.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    H. Hasse, “Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik,” J. reine angew. Math. Bd. 175, S. 50–54, 1936.Google Scholar
  9. [9]
    G. Castagnoli, J.L. Massey, P.A. Schoeller, and N. Seemann, “On repeated-root cyclic codes,” IEEE Trans. on Inform. Theory vol. IT-37, pp. 337–342, 1991.CrossRefGoogle Scholar
  10. [10]
    L.M. Milne-Thomson The Calculus of Finite Differences MacMillan and Co., London, 1951.Google Scholar
  11. [11]
    E.L. Key, “An analysis of the structure and complexity of nonlinear sequence generators,” IEEE Trans. on Inform. Theory vol. IT-22, pp. 732–736, 1976.CrossRefGoogle Scholar
  12. [12]
    R.A. Rueppel Analysis and Design of Stream Ciphers Springer-Verlag, Berlin, Heidelberg, 1986.MATHCrossRefGoogle Scholar
  13. [13]
    W.W. Peterson and E.J. Weldon, Jr. Error Correcting Codes MIT Press, Cambridge, MA, and London, 1972.MATHGoogle Scholar
  14. [14]
    J.L. Massey, D.J. Costello Jr. and J. Justesen, “Polynomial weights and code constructions,” IEEE Trans. on Inform. Theory vol. IT-19, pp. 101–110, 1973.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Christoph G. Günther
    • 1
  1. 1.Ascom Tech LtdMägenwilSwitzerland

Personalised recommendations