Skip to main content

CMOS Analog Neural Network Systems Based on Oscillatory Neurons

  • Chapter
Book cover Silicon Implementation of Pulse Coded Neural Networks

Abstract

The area of Artificial Neural Networks consists of building machines and algorithms that are based somehow on the structure of natural brains. It has been shown during the past years that such type of machines are able to do human kind of tasks (associative memories, pattern recognition, feature extraction, ...) much more efficiently than conventional algorithms running on conventional computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hamilton, A. F. Murray, D. J. Baxter, S. Churcher, H. M. Reekie, and L. Tarassenko, “Integrated Pulse Stream Neural Networks: Results, Issues, and Pointers”IEEE Trans. Neural Networksvol. 3, May, pp. 385–393, 1992.

    Article  Google Scholar 

  2. A. F. Murray, D. Del Corso and L. Tarassenko, “Pulse-Stream VLSI Neural Networks Mixing Analog and Digital Techniques”IEEE Trans. Neural Networksvol. 2, March, pp. 193–204, 1991.

    Article  Google Scholar 

  3. G. Moon, M. E. Zaghloul, and R. W. Newcomb, “VLSI Implementation of Synaptic Weighting and Summing in Pulse Coded Neural-Type Cells”IEEE Trans. Neural Networksvol. 3, May, pp. 394–403, 1992.

    Article  Google Scholar 

  4. M. R. DeYong, R. L. Findley, and C. Fields, “The Design, Fabrication, and Test of a New VLSI Hybrid Analog-Digital Neural Processing Element”IEEE Trans. Neural Networksvol. 3, May, pp. 363–374, 1992.

    Article  Google Scholar 

  5. J.E. Tomberg and K. K. K. Kaski, “Pulse-Density Modulation Technique in VLSI Implementations of Neural Network Algorithms”IEEE J. Solid-State Circuitsvol. 25, No. 5, pp. 1277–1286, October, 1990.

    Article  Google Scholar 

  6. N. El-Leithy and R. W. Newcomb, “Hysteresis in Neural-Type Circuits”Proc. IEEE Int. Symp. Circuits and Systems (ISCAS88)Helsinki, pp. 993–996, 1988.

    Google Scholar 

  7. D. Watola, D. Gembala, and J. Meador, “Competitive Learning in Asynchronous Pulse Density Integrated Circuits”Proc. IEEE Int. Symp. Circuits and Systems (ISCAS92)San Diego, pp. 2216–2219, 1992.

    Google Scholar 

  8. J. Lazzaro, “Low-Power Silicon Spiking Neurons and Axons”Proc. IEEE Int. Symp. Circuits and Systems (ISCAS92)San Diego, pp. 2220–2223, 1992.

    Google Scholar 

  9. J. G. Elias, H. H. Chu, and S. M. Meshreki, “A Neuromorphic Impulsive Circuit for Processing Dynamic Signals”Proc. IEEE Int. Symp. Circuits and Systems (ISCAS92)San Diego, pp. 2208–2211, 1992.

    Google Scholar 

  10. B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodríguez-Vázquez and J. L. Huertas, “A CMOS Implementation of FitzHugh-Nagumo Neuron Model”IEEE J. Solid-State Circuitsvol. 26, No. 7, July, pp. 956–965, 1991.

    Article  Google Scholar 

  11. B. Linares-Barranco, “Analog Neural Network VLSI Implementations”, PhD Dissertation, Texas A&M University, College-Station, Texas, December 1991.

    Google Scholar 

  12. F. L. StraudPhysiology. A Regulatory System ApproachNew York, MacMillan, 1978.

    Google Scholar 

  13. G. M. ShepherdNeurobiologyNew York, Oxford University Press, 1988.

    Google Scholar 

  14. A. L. Hodgkin and A. F. Huxley, “A Qualitative Description of Membrane Current and its Application to Conduction and Excitation in Nerves”Journal of Physiologyvol. 177, pp. 500–544, 1952.

    Google Scholar 

  15. J. P. Keener, “Analog Circuitry for the Van der Pol and FitzHughNagumo Equations”IEEE Trans. Systems, Man and Cyberneticsvol. 13, No. 5, Sept/Oct, pp. 1010–1014, 1983.

    Article  MathSciNet  Google Scholar 

  16. R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve Membrane”Biophysical Journalvol. 1, pp. 445–466, 1961.

    Article  Google Scholar 

  17. J. Nagumo, S.Arimoto and S. Yoshizawa, “An Active Pulse Transmission Line Simulating Nerve Axon”Proc. IREvol. 50, pp. 2061–2070, 1964.

    Article  Google Scholar 

  18. E. Sánchez-Sinencio, J. Ramírez-Angulo, B. Linares-Barranco and A. Rodríguez-Vázquez, “Operational Transconductance Amplifier Based Nonlinear Function Syntheses”IEEE J. Solid-State Circuitsvol. 24, No. 6, December, pp. 1576–1586, 1989.

    Article  Google Scholar 

  19. Leon O. Chua, Charles A. Desoer and Ernest S. KuhLinear and Nonlinear CircuitsNew York, McGraw-Hill, 1987.

    MATH  Google Scholar 

  20. A. P. Nedungadi and R. L. Geiger, “High-Frequency Voltage-Controlled Continuous-Time Lowpass Filter Using Linearized CMOS Integrators”Electronics Lettersvol. 22, June, pp. 729–731, 1986.

    Article  Google Scholar 

  21. B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodríguez-Vázquez and J. L. Huertas, “A Programmable Neural Oscillator Cell”IEEE Trans. Circuits and Systemsvol. 36, No. 5, May, pp. 756–761, 1989.

    Article  Google Scholar 

  22. B. Linares-Barranco, E. Sánchez-Sinencio, R. W. Newcomb, A. Rodríguez-Vázquez and J. L. Huertas, “A Novel CMOS Analog Neural Oscillator Cell”Proc. IEEE Int. Symp. Circuits and Systems (ISCAS89)Portland, pp. 794–797, 1989.

    Google Scholar 

  23. D. W. Tank and J. J. Hopfield, “Simple ‘Neural’ Optimization Networks: An A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit”IEEE Trans. Circuits and Systemsvol. 33, No. 5, May, 1986.

    Google Scholar 

  24. B. Kosko, “Adaptive Bidirectional Associative Memories”Applied Opticsvol. 26, No. 23, pp. 4947–4960, 1 December, 1987.

    Article  Google Scholar 

  25. B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodríguez-Vázquez, and J. L. Huertas, “A Modular T-Mode Design Approach for Analog Neural Network Hardware Implementations”IEEE J. Solid-State Circuitsvol. 27, No. 5, May, pp. 701–713, 1992.

    Article  Google Scholar 

  26. B. Linares-Barranco, E. Sánchez-Sinencio, A. Rodríguez-Vázquez, and J. L. Huertas, “A CMOS Analog Adaptive BAM with On-Chip Learning and Weight Refreshing”IEEE Trans. Neural Networksvol. 4, March 1993.

    Google Scholar 

  27. P. Erdi, T. Grobler, and G. Barna, “Oscillation and Chaos in a Model of the Olfactory Bulb”Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networkslizuka, Japan, pp. 917–920, July 1992.

    Google Scholar 

  28. Z. Li and J. J. Hopfield, “Modeling the Olfactory Bulb and its Neural Oscillatory Processing”Biological Cybernetics61, pp. 379–392, 1989.

    Article  MATH  Google Scholar 

  29. W. J. Freeman, “Imaging and Interpreting the Geometries of Chaotic Attractors of Brain Systems in Perceptual Information Processing”Proceedings of the International Conference on Fuzzy Logic and Neural Networkslizuka, Japan, pp. 587–590, 1990.

    Google Scholar 

  30. D. L. Birx and S. J. Pipenberg, “Chaotic Oscillators and Complex Mapping Feed Forward Networks (CMFFNS) for Signal Detection in Noisy Environments”Proceedings of the 1992 International Joint Conference on Neural NetworksBaltimore, vol. II, pp. 881–888, June 1992.

    Article  Google Scholar 

  31. J. Tani, “Diversity and Regularity in Chaotic Wandering of Robot”Proceedings of the 2nd International Conference on Fuzzy Logic and Neural NetworksIizuka, Japan, pp. 955–960, July 1992.

    Google Scholar 

  32. L. O. Chua, M. Komuro, and T. Matsumoto, “The Double Scroll Family”IEEE Trans. on Circuits and System svol. CAS-33, pp. 1072–1118, Nov. 1986.

    Article  MathSciNet  Google Scholar 

  33. T. Matsumoto, L. O. Chua, and M. Komuro, “The Double Scroll”IEEE Trans. on Circuits and Systemsvol. CAS-32, pp. 798–818, August 1985.

    MathSciNet  Google Scholar 

  34. M. Delgado-Restituto and A. Rodríguez-Vázquez, “A CMOS VLSI Implementation of Chua’s Circuit”Journal of Circuits Systems and Computers(Special Issue on Chua’s Circuit), 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linares-Barranco, B., Sánchez-Sinencio, E., Rodríguez-Vázquez, A., Huertas, J.L. (1994). CMOS Analog Neural Network Systems Based on Oscillatory Neurons. In: Zaghloul, M.E., Meador, J.L., Newcomb, R.W. (eds) Silicon Implementation of Pulse Coded Neural Networks. The Springer International Series in Engineering and Computer Science, vol 266. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2680-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2680-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6152-7

  • Online ISBN: 978-1-4615-2680-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics