Skip to main content

Wheat proteins: structure and functionality in milling and breadmaking

  • Chapter
Wheat

Abstract

Wheat flour proteins have long been known to be crucial in relation to breadmaking quality, both protein quantity and quality being important.1–3 The major wheat endosperm storage proteins, the gluten proteins, comprising two prolamin groups, gliadin and glutenin, have been studied intensively because they confer the viscoelasticity on doughs considered essential for breadmaking quality. Qualitative differences in their composition and properties account for much of the variation in breadmaking quality between wheat cultivars. Glutenin, comprising polymers with subunits linked by disulphide bonds, is particularly important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schofield J. D. and Booth, M. R. (1983) Wheat proteins and their technological significance. In Developments in Food Proteins2, (ed. B. J. F. Hudson) Applied Science, Barking, Essex, UK, pp. 1–65.

    Google Scholar 

  2. Wrigley, C. W. and Bietz, J. A. (1988) Proteins and amino acids. In Wheat Chemistry and Technology, 3rd edn, vol.1, (ed. Y. Pomeranz) American Association of Cereal Chemists, St. Paul, Minnesota, pp. 159–275.

    Google Scholar 

  3. MacRitchie, F., du Cros, D. L. and Wrigley, C. W. (1990) Flour polypeptides related to wheat quality. Adv. Cereal Sci. Technol., 10, 79–145.

    CAS  Google Scholar 

  4. Shewry, P. R. and Miflin, B. J. (1955) Seed storage proteins of economically important cereals. Adv. Cereal Sci. Technol, 7, 1–84.

    Google Scholar 

  5. Shewry, P. R., Haiford, N. G. and Tatham, A. S. (1989) The high molecular weight subunits of wheat, barley and rye: Genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surveys Plant Molec. Cell Biol., 6, 163–219.

    CAS  Google Scholar 

  6. Tatham, A. S., Shewry, P. R. and Belton, P. S. (1990) Structural studies of cereal prolamins, including wheat gluten. Adv. Cereal Sci. Technol., 10, 1–78.

    Article  CAS  Google Scholar 

  7. Shewry, P. R., Haiford, N. G. and Tatham, A. S. (1992) High molecular weight subunits of wheat glutenin. J. Cereal Sci., 15, 115–119.

    Article  Google Scholar 

  8. Payne, P. I., Holt, L. M., Jackson, E. A. and Law, C. N. (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans R. Soc. London, Ser. B, 304, 359–371.

    Article  CAS  Google Scholar 

  9. Payne, P. I. (1987) Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Ann. Rev. Plant Physiol., 38, 141–153.

    Article  CAS  Google Scholar 

  10. Payne, P. I. (1987) The genetical basis of breadmaking quality in wheat. Aspects Appl. Biol., 15, 79–90.

    Google Scholar 

  11. Kent, N. L. (1984) Technology of Cereals, 3rd edn, Pergamon Press, Oxford.

    Google Scholar 

  12. Schofield, J. D. and Greenwell, P. (1987) Wheat starch granule proteins and their technological significance. In Cereals in a European Context, (ed. I. D. Morton) VCH Verlagsgesellschaft mbH, Weinheim and Ellis Horwood, Chichester, pp. 407–420.

    Google Scholar 

  13. Finney, K. F. (1943) Fractionating and reconstituting techniques as tools in wheat flour research. Cereal Chem., 20, 381–396.

    CAS  Google Scholar 

  14. Finney, K. F. and Barmore, M. A. (1948) Loaf volume and protein content of hard winter and spring wheats. Cereal Chem., 25, 291–312.

    CAS  Google Scholar 

  15. Bushuk, W. (1985) Wheat flour proteins: Structure and role in breadmaking, in Analyses as Practical Tools in the Cereal Field, (ed. K. M. Fjell) Norwegian Grain Corp., Oslo, pp. 187–198.

    Google Scholar 

  16. Booth, M. R. and Melvin, M. A. (1979) Factors responsible for the poor breadmaking quality of high yielding European wheat. J. Sci. Food Agric., 30, 1057–1064.

    Article  CAS  Google Scholar 

  17. MacRitchie, F. (1978) Differences in baking quality between wheat flours. J. Food Technol., 13, 187–194.

    Article  Google Scholar 

  18. MacRitchie, F. (1985) Studies on the methodology for fractionation and reconstitution of wheat flours. J. Cereal Sci., 3, 221–230.

    Article  CAS  Google Scholar 

  19. Hoseney, R. C., Finney, K. F., Shogren, M. D. and Pomeranz, Y. (1969) Functional (breadmaking) and biochemical properties of wheat flour components. II. Role of water solubles. Cereal Chem., 46, 117–125.

    CAS  Google Scholar 

  20. Chung, O. K., Pomeranz, Y. and Finney, K. F. (1982) Relation of polar lipid content to mixing requirement and loaf volume potential of hard red winter wheat flour. Cereal Chem., 59, 14–20.

    CAS  Google Scholar 

  21. Zawistowska, U., Bekes, F. and Bushuk, W. (1984) Intercultivar variations in lipid content, composition and distribution and their relation to baking quality. Cereal Chem., 61, 527–531.

    CAS  Google Scholar 

  22. Bekes, F., Zawistowska, U., Zillman, R. R. and Bushuk, W. (1986) Relationship between lipid content and composition and loaf volume of twenty–six common spring wheats. Cereal Chem., 63, 327–331.

    CAS  Google Scholar 

  23. Morrison, W. R., Law, C. N., Wylie, L. J., Coventry, A. M. and Seekings, J. (1989) Effect of group 5 chromosomes on the free polar lipids and breadmaking quality of wheat. J. Cereal Sci., 9, 41–51.

    Article  CAS  Google Scholar 

  24. Huebner, F. and Wall, J. S. (1976) Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality. Cereal Chem., 53, 258–269.

    CAS  Google Scholar 

  25. Byers, M., Miflin, B. J. and Smith, S. J. (1983) A quantitative comparison of the extraction of protein fractions from wheat grain by different solvents, and of the polypeptide and amino acid composition of the alcohol-soluble proteins. J. Sci. Food Agric., 34, 447–462.

    Article  CAS  Google Scholar 

  26. Webb, T., Heaps, P. W. and Coppock, J. B. M. (1971) Protein quality and quantity: a rheological assessment of their relative importance in breadmaking. J. Food Technol., 6, 47–62.

    Article  Google Scholar 

  27. Pernollet, J. C. and Mossé, J. (1983) Structure and location of legume and cereal seed storage proteins. In Seed Proteins (ed. J. Daussant, J. Mossé and J. G. Vaughan) Academic Press, NY and London, pp. 155–191.

    Google Scholar 

  28. Wall, J. S. (1979) The role of wheat proteins in determining baking quality. In Recent Advances in the Biochemistry of Cereals, (ed. D. L. Laidman and R. W. Wyn-Jones) Phytochem. Soc. Eur. Symp. Ser. No. 16, Academic Press, London, NY and San Francisco, pp. 275–311.

    Google Scholar 

  29. Orth, R. A. and Bushuk, W. (1972) A comparative study of the proteins of wheats of diverse baking quality. Cereal Chem., 49, 268–275.

    CAS  Google Scholar 

  30. Orth, R. A. and O’Brien, L. (1976) A new biochemical test of dough strength of wheat flour. J. Aust. Inst. Agric. Sci., 42, 122–124.

    Google Scholar 

  31. Payne, P. I. and Corfield, K. D. (1979) Subunit composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium. Planta, 145, 83–88.

    Article  CAS  Google Scholar 

  32. Bietz, J. A. and Wall, J. S. (1980) Identity of high molecular weight gliadin and ethanol-soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem., 57, 415–421.

    CAS  Google Scholar 

  33. Bottomley, R. C, Kearns, H. F. and Schofield, J. D. (1982) Characterisation of wheat flour and gluten proteins using buffers containing sodium dodecyl sulphate. J. Sci. Food Agric., 33, 481–491.

    Article  CAS  Google Scholar 

  34. Field, J. M., Shewry, P. R., Burgess, S. R., Forde, J., Parmar, S. and Miflin, B. J. (1983) The presence of high molecular weight aggregates in protein bodies of developing endosperms of wheat and other cereals. J. Cereal Sci., 1, 33–41.

    Article  CAS  Google Scholar 

  35. Payne, P. I., Holt, L. M., Burgess, S. R. and Shewry, P. R. (1986) Characterisation by two-dimensional gel electrophoresis of the protein components of protein bodies isolated from the developing endosperm of wheat (Triticum aestivum). J. Cereal Sci., 4, 217–223.

    Article  Google Scholar 

  36. Miflin, B. J., Field, J. M. and Shewry, P. R. (1983) Cereal storage proteins and their effect on technological properties. In Seed Proteins, (ed. J. Daussant, J. Mossé and J. G. Vaughan) Academic Press, London, New York and San Francisco, pp. 255–319.

    Google Scholar 

  37. Shewry, P. R., Tatham, A. S., Forde, J., Kreis, M. and Miflin, B. J. (1986) The classification and nomenclature of wheat gluten protein: A reassessment. J. Cereal Sci., 4, 97–106.

    Article  CAS  Google Scholar 

  38. Schofield, J. D. (1986) Flour proteins: Structure and functionality in baked products, in Chemistry and Physics of Baking, (eds J. M. V. Blanshard, P. J. Frazier and T. Galliard) Roy. Soc. Chem., London, pp. 14–29.

    Google Scholar 

  39. Payne, P. I., Holt, L. M., Jarvis, M. G. and Jackson, E. A. (1985) Two-dimensional fractionation of the endosperm proteins of bread wheat (Triticum aestivum): Biochemical and genetic studies. Cereal Chem., 62, 317–326.

    Google Scholar 

  40. Jones, R. W., Taylor, N. W. and Senti, F. R. (1959) Electrophoresis and fractionation of wheat gluten. Arch. Biochem. Biophys, 84, 363–376.

    Article  CAS  Google Scholar 

  41. Elton, G. A. H. and Ewart, J. A. D. (1960) Starch gel electrophoresis of wheat proteins. Nature, 187, 600–601.

    Article  CAS  Google Scholar 

  42. Woychik, J. H., Boundy, J. A. and Dimler, R. J. (1961) Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch. Biochem. Biophys., 94, 477–482.

    Article  CAS  Google Scholar 

  43. Wrigley, C. W., Autran, J.-C. and Bushuk, W. (1982) Identification of cereal varieties by gel electrophoresis of the grain proteins. Adv. Cereal Sci. Technol., 5, 211–259.

    CAS  Google Scholar 

  44. Booth, M. R. and Ewart, J. A. D. (1969) Studies on four components of wheat gliadins. Biochim. Biophys. Acta, 181, 226–233.

    Article  CAS  Google Scholar 

  45. Charbonnier, L. (1974) Isolation and characterization of omega-gliadin fractions. Biochim. Biophys. Acta, 359, 142–151.

    Article  CAS  Google Scholar 

  46. Kasarda, D. D., Autran, J.-C, Lew, E. J.-L., Nimmo, C. C. and Shewry, P. R. (1983) N-terminal amino acid sequences of ω-gliadins and ω-secalins: Implications for the evolution of prolamin genes. Biochim. Biophys. Acta, 747, 138–150.

    Article  CAS  Google Scholar 

  47. Wrigley, C. W. and Shepherd, K. W. (1973) Electrofocusing of grain proteins from wheat genotypes. Ann. NY Acad. Sci., 209, 154–162.

    Article  CAS  Google Scholar 

  48. Wrigley, C. W., Autran, J.-C. and Bushuk, W. (1982) Identification of cereal varieties by gel electrophoresis of the grain proteins. Adv. Cereal Sci. Technol., 5, 211–259.

    CAS  Google Scholar 

  49. Ellis, J. R. S. (1984) The cereal grain trade in the United Kingdom: The problem of cereal variety. Philos. Trans. R. Soc. London, Ser B., 304, 395–407.

    Article  Google Scholar 

  50. Jackson, E. A., Holt, L. M. and Payne, P. I. (1983) Characterisation of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal location of their controlling genes. Theor. Appl. Genet., 66, 29–37.

    CAS  Google Scholar 

  51. Bunce, N. A. C., White, R. P. and Shewry, P. R. (1985) Variation in estimates of molecular weights of cereal prolamins by SDS-PAGE. J. Cereal Sci., 3, 131–142.

    Article  CAS  Google Scholar 

  52. Field, J. M., Shewry, P. R., Miflin, B. J. and March, J. F. (1982) The purification and characterisation of homologous high molecular weight storage proteins from grain of wheat, barley and rye. Theor. Appl. Genet., 62, 329–336.

    CAS  Google Scholar 

  53. Anderson, O. D., Halford, N. G., Forde, J., Yip, R., Shewry, P. R. and Greene, F. L. (1988) Structure and analysis of the high molecular weight glutenin genes from Triticum aestivum L cv. Cheyenne, in Proceedings 7th International Wheat Genetics Symposium, (ed T. E. Miller and R. M. D. Koebner) IPSR, Cambridge, pp. 699–704.

    Google Scholar 

  54. Sutton, K. H. (1991) Qualitative and quantitative variation among high molecular weight subunits of glutenin detected by reversed-phase high performance liquid chromatography. J. Cereal Sci., 14, 25–34.

    Article  CAS  Google Scholar 

  55. Seilmeier, W., Belitz, H.-D. and Wieser, H. (1991) Separation and quantitative determination of high molecular weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sicco. Z. Lebensm. Unters Forsch., 192, 124–129.

    Article  CAS  Google Scholar 

  56. Bietz, J. A. and Wall, J. S. (1980) Identity of high molecular weight gliadin and ethanol-soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem., 57, 415–421.

    CAS  Google Scholar 

  57. Kasarda, D. D., Bernardin, J. E. and Nimmo, C. C. (1976) Wheat proteins. Adv. Cereal Sci. Technol, 1, 158–236.

    CAS  Google Scholar 

  58. Payne, P. I., Holt, L. M. and Law, C. N. (1981) Structural and genetic studies on the high molecular weight subunits of wheat glutenin. Part 1. Allelic variation in subunits amongst varieties of wheat (Triticum aestivum). Theor. Appl. Genet., 60, 229–236.

    Article  CAS  Google Scholar 

  59. Kasarda, D. D., Bernardin, J. E. and Gaffield, W. (1968) Circular dichroism and optical rotary dispersion of α-gliadin. Biochemistry, 7, 3950–3957.

    Article  CAS  Google Scholar 

  60. Tatham, A. S. and Shewry, P. R. (1985) The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of α-, β-, γ– and ω-gliadins. J. Cereal. Sci., 3, 103–113.

    Article  CAS  Google Scholar 

  61. Tatham, A. S., Miflin, B. J. and Shewry, P. R. (1985) The α-turn conformation in wheat gluten proteins. Relationships to gluten elasticity. Cereal Chem., 62, 405–412.

    CAS  Google Scholar 

  62. Tatham, A. S., Field, J. M., Smith, S. J. and Shewry, P. R. (1987). The conformation of wheat gluten proteins. 2. Aggregated gliadins and LMW subunits of glutenin. J. Cereal Sci., 5, 203–214.

    Article  CAS  Google Scholar 

  63. Purcell, J. M., Kasarda, D. D. and Wu, C.-S. C. (1988) Secondary structures of wheat α-and ω-proteins: Fourier transform infra-red spectroscopy. J. Cereal Sci., 7, 21–32.

    Article  CAS  Google Scholar 

  64. Tatham, A. S., Mason, P. and Popineau, Y. (1990) Conformational studies of peptides derived by the enzymic hydrolysis of a gamma-type gliadin. J. Cereal Sci., 11, 11–13.

    Google Scholar 

  65. Tatham, A. S., Shewry, P. R. and Miflin, B. J. (1984) Wheat gluten elasticity: A similar molecular basis to elastin. FEBS Lett., 177, 205–208.

    Article  CAS  Google Scholar 

  66. Field, J. M., Tatham, A. S. and Shewry, P. R. (1987) The structure of a high M r subunit of durum wheat (T. durum) gluten. Biochem. J., 247, 215–221.

    CAS  Google Scholar 

  67. Miles, M. J., Carr, H. J., McMaster, T., Belton, P. S., Morris, V. J., Field, J. M., Shewry, P. R. and Tatham, A. S. (1991) Scanning, tunnelling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure. Proc. Natl. Acad. Sci. USA, 88, 68–71.

    Article  CAS  Google Scholar 

  68. Ewart, J. A. D. (1968) A hypothesis for the structure and rheology of glutenin, J. Sci. Food Agric., 19, 617–623.

    Article  CAS  Google Scholar 

  69. Ewart, J. A. D. (1977) Re-examination of the linear glutenin hypothesis. J. Sci. Food Agric., 28, 191–199.

    Article  CAS  Google Scholar 

  70. Ewart, J. A. D. (1979) Glutenin structure. J. Sci. Food Agric., 30, 482–492.

    Article  CAS  Google Scholar 

  71. Graveland, A., Bosveld, P., Lichtendonk, W. J., Marseille, J. P., Moonen, J. H. E. and Scheepstra, A. (1985) A model for the molecular structure of the glutenins from wheat flour. J. Cereal Sci., 3, 1–16.

    Article  CAS  Google Scholar 

  72. Kasarda, D. D. (1989) Glutenin structure in relation to wheat quality, in Wheat is Unique, (ed. Y. Pomeranz) American Association of Cereal Chemists, St. Paul, MN, USA, pp.277–302.

    Google Scholar 

  73. Lawrence, G. J. and Payne, P. I. (1983) Detection by gel electrophoresis of oligomers formed by the association of high molecular weight glutenin protein subunits of wheat endosperm. J. Exp. Bot., 34, 254–267.

    Article  CAS  Google Scholar 

  74. Werner, W. E., Adelsteins, A. E. and Kasarda, D. D. (1992) Composition of high molecular weight glutenin subunit dimers formed by partial reduction of residue protein. Cereal Chem., 69, 535–541.

    CAS  Google Scholar 

  75. Köhler, P., Belitz, H.-D. and Weiser, H. (1991) Disulphide bonds in wheat gluten: isolation of a cystine peptide from glutenin. Z. Lebensm. Unters. Forsch., 192, 234—239.

    Article  Google Scholar 

  76. Pomeranz, Y. (1965) Dispersibility of wheat proteins in aqueous urea solutions — new parameter to evaluate breadmaking potentialities of wheat flour. J. Sci. Food Agric., 16, 586–593.

    Article  CAS  Google Scholar 

  77. Orth, R. A. and Bushuk, W. (1972) A comparative study of the proteins of wheats of diverse baking qualities. Cereal Chem., 49, 268–275.

    CAS  Google Scholar 

  78. Axford, D. W. E., McDermott, E. E. and Redman, D. G. (1979) Note on the sodium dodecyl sulphate test and breadmaking quality: comparison with Pelshenke and Zeleny tests. Cereal Chem., 56, 582–584.

    CAS  Google Scholar 

  79. Moonen, J. H. E., Scheepstra, A. and Graveland, A. (1983) The positive effects of the high molecular weight subunits 3 + 10 and 2* of glutenin on the breadmaking quality of wheat cultivars. Euphytica, 32, 735–742.

    Article  Google Scholar 

  80. Field, J. M., Shewry, P. R. and Miflin, B. J. (1983) Solubilization and characterization of wheat gluten proteins: Correlations between the amounts of aggregated proteins and baking quality. J. Sci. Food Agric., 34, 370–377.

    Article  CAS  Google Scholar 

  81. Huebner, F. and Wall, J. S. (1976) Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality. Cereal Chem., 53, 258–269.

    CAS  Google Scholar 

  82. Bottomley, R. C., Kearns, H. F. and Schofield, J. D. (1982) Characterisation of wheat flour and gluten proteins using buffers containing sodium dodecyl sulphate. J. Sci. Food Agric., 33, 481–491.

    Article  CAS  Google Scholar 

  83. Ewart, J. A. D. (1980) Loaf volume and the intrinsic viscosity of glutenin. J. Sci. Food Agric, 31, 1323–1336.

    Article  CAS  Google Scholar 

  84. Payne, P. I., Corfield, K. G. and Blackman, J. A. (1979) Identification of a high molecular weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. J. Sci. Food Agric., 55, 153–159.

    CAS  Google Scholar 

  85. Payne, P. I., Nightingale, M. A., Krattiger, A. F. and Holt, L. M. (1987) The relationship between HMW glutenin subunit composition and the breadmaking quality of British-grown wheat varieties. J. Sci. Food Agric., 40, 51–65.

    Article  CAS  Google Scholar 

  86. Payne, P. I., Holt, L. M., Krattiger, A. F. and Carrillo, J. M. (1988) Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. J. Cereal Sci., 7, 229–235.

    Article  CAS  Google Scholar 

  87. Payne, P. I., Corfield, K. G., Holt, L. M. and Blackman, J. A. (1981) Correlations between the inheritance of certain high molecular weight subunits of glutenin and breadmaking quality in progencies of six crosses of bread wheat. J. Sci. Food Agric., 32, 51–60.

    Article  CAS  Google Scholar 

  88. Rogers, W. J., Payne, P. I., Seekings, J. A. and Sayers, E. J. (1991) Effect on breadmaking quality of x-type and y-type high molecular weight subunits of glutenin. J. Cereal Sci., 14, 209–222.

    Article  Google Scholar 

  89. Bloksma, A. H. (1990) Rheology of the breadmaking process. Cereal Foods World., 35, 228–235.

    Google Scholar 

  90. Goldsborough, A. P., Bulleid, N. J., Freedman, R. B. and Flavell, R. B. (1989) Conformational differences between two wheat (Triticum aestivum) ‘high molecular weight’ glutenin subunits are due to a short region containing six amino acid differences. Biochem. J., 263, 837–842.

    Google Scholar 

  91. Green, F. C., Anderson, R. E., Yip, R. E., Halford, N. G., Malpica Romero, J.-M. and Shewry, P. R. (1988) Analysis of possible quality-related sequence variations in the 1D glutenin high molecular weight subunit genes of wheat, in Proceeding 7th International Wheat Genetics Symposium, Vol 1, (ed. T. E. Miller and R. M. D. Koebner) IPSR, Cambridge, UK, pp. 735–740.

    Google Scholar 

  92. Sutton, K. H., Hay, R. L. and Griffin, W. B. (1989) Assessment of the potential bread baking quality of New Zealand wheats by RP-HPLC of glutenins. J. Cereal Sci., 10, 113–122.

    Article  CAS  Google Scholar 

  93. Marchylo, B. A., Luckow, O. M. and Kruger, J. E. (1992) Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. J. Cereal Sci., 15, 29–38.

    Article  CAS  Google Scholar 

  94. Kolster, P., Krechting, C. F. and van Gelder, W. M. J. (1992) Quantification of individual high molecular weight subunits of wheat glutenin using SDS-PAGE and scanning densitometry. J. Cereal Sci., 15, 49–62.

    Article  CAS  Google Scholar 

  95. Wrigley, C. W. (1980) The genetic and chemical significance of varietal differences in gluten composition. Ann. Technol. Agric., 29, 213–227.

    CAS  Google Scholar 

  96. Wrigley, C. W., Robinson, P. J. and Williams, W. T. (1981) Association between electrophoretic patterns of gliadin proteins and quality characteristics of wheat cultivars. J. Sci. Food Agric., 32, 433–442.

    Article  CAS  Google Scholar 

  97. Wrigley, C. W., Robinson, P. J. and Williams, W. T. (1982) Relationships between Australian wheats on the basis of pedigree, grain protein composition and grain quality in wheat. Aust. J. Agric. Res., 33, 419–427.

    Article  Google Scholar 

  98. Wrigley, C. W., Lawrence, G. J. and Shepherd, K. W. (1982) Association of glutenin subunits with gliadin composition and grain quality in wheat. Aust. J. Plant Physiol., 9, 15–30.

    Article  CAS  Google Scholar 

  99. Hoseney, R. C., Finney, K. F., Pomeranz, Y. and Shogren, M. D. (1969) Functional (breadmaking) and biochemical properties of wheat flour components. IV. Gluten protein fractionation by solubilizing in 70% ethyl alcohol and in dilute lactic acid. Cereal Chem., 46, 495–518.

    CAS  Google Scholar 

  100. Pogna, N. E., Boggini, G., Corbellini, M., Cattaneo, M. and Dal Belin Peruffo, A. (1982) Association between gliadin electrophoretic bands and quality in common wheat. Can. J. Plant Sci., 62, 913–918.

    Article  Google Scholar 

  101. Dal Belin Peruffo, A., Pogna, N. E., Tealdo, E., Tutta, C. and Alubzio, A. (1985) Isolation and partial characterisation of gamma-gliadins 40 and 43.5 associated with quality in common wheat. J. Cereal Sci., 3, 355–362.

    Article  Google Scholar 

  102. Campbell, W. P., Wrigley, C. W., Cressey, P. J. and Slack, C. R. (1989) Statistical correlations between quality attributes and grain protein composition for 71 hexaploid wheats used as breeding parents. Cereal Chem., 64, 293–299.

    Google Scholar 

  103. Cressey, P. J., Campbell, W. P., Wrigley, C. W. and Griffin, W. B. (1987) Statistical correlations between quality attributes and grain protein composition for 60 advanced lines of crossbred wheat. Cereal Chem., 64, 299–301.

    CAS  Google Scholar 

  104. Blumenthal, C. S., Batey, I. L., Bekes, F., Wrigley, C. W. and Barlow, E. W. R. (1990) Gliadin genes contain heat-shock elements: Possible relation to heat-induced changes in grain quality. J. Cereal Sci., 11, 185–188.

    Article  CAS  Google Scholar 

  105. Damidaux, R., Autran, J.-C., Grignac, P. and Feillet, P. (1978) Mise en evidence de relations applicable in selection entre l’electrophoregramme des gliadines et les proprietes viscoelastiques du gluten de Triticum durum Desf. C. R. Seances Acad. Sci. Ser. D, 287, 701–704.

    Google Scholar 

  106. Damidaux, R., Autran, J.-C. and Feillet, P. (1980) Gliadin electrophoregrams and measurements of gluten viscoelasticity in durum wheats. Cereal Foods World, 25, 754–756.

    CAS  Google Scholar 

  107. Kosmolak, F. G., Dexter, J. E., Matsuo, R. R., Leisle, D. and Marchylo, B. A. (1980) A relationship between durum wheat quality and gliadin electrophoregrams. Can. J. Plant Sci., 60, 427–432.

    Article  Google Scholar 

  108. du Cros, D. L., Wrigley, C. W. and Hare, R. A. (1982) Prediction of durum wheat quality from gliadin protein composition. Aust. J. Agric. Res., 33, 429–442.

    Article  Google Scholar 

  109. Payne, P. I., Jackson, E. A. and Holt, L. M. (1984) The association between gamma-gliadin 45 and gluten strength in durum wheat varieties: a direct causal effect or the result of genetic linkage? J. Cereal Sci., 2, 73–81.

    Article  CAS  Google Scholar 

  110. Pogna, N. E., Lafiandra, D., Feillet, P. and Autran, J.-C. (1988) Evidence for a direct causal effect of low molecular weight subunits of glutenins on gluten viscoelasticity in durum wheats. J. Cereal Sci., 7, 211–214.

    Article  CAS  Google Scholar 

  111. Singh, N. K. and Shepherd, K. W. (1988) Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theor. Appl. Genetics, 75, 628–641.

    Article  CAS  Google Scholar 

  112. Gupta, R. B. and Shepherd, K. W. (1989) Low molecular weight glutenin subunits in wheat: their variation, inheritance, and association with breadmaking quality, in Proceedings 7th International Wheat Genetics Symposium, (ed. T. E. Miller and R. M. D. Koebner), I.P.S.R., Cambridge, pp. 943–949.

    Google Scholar 

  113. Graybosch, R. A. and Morris, R. (1990) An improved SDS-PAGE method for the analysis of wheat endosperm storage proteins. J. Cereal Sci., 11, 201–212.

    Article  CAS  Google Scholar 

  114. Khelifi, D. and Branlard, G. (1991) A new two-step electrophoresis method for analysing gliadin polypeptides and high- and low molecular weight subunits of glutenin of wheat. J. Cereal Sci., 13, 41–48.

    Article  CAS  Google Scholar 

  115. Gupta, R. B. and MacRitchie, F. (1991) A rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit composition of glutenin in wheat. J. Cereal Sci., 14, 105–110.

    Article  CAS  Google Scholar 

  116. Singh, N. K., Shepherd, K. W. and Cornish, G. B. (1991) A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci., 14, 203–208.

    Article  Google Scholar 

  117. Zhen, Z. and Mares, D. (1992) A simple extraction and one-step SDS-PAGE system for separating HMW and LMW glutenin subunits of wheat and high molecular weight proteins of rye. J. Cereal Sci.,15, 63–78.

    Article  CAS  Google Scholar 

  118. Gazanhes, V., Morel, M. H. and Autran, J.-C. (1991) The low molecular weight glutenin composition of French bread wheats and its effect on dough properties. Cereal Foods World, 36, 723, Abs. 277.

    Google Scholar 

  119. Pomeranz, Y. and Williams, P. C. (1990) Wheat hardness: Its genetic, structural and biochemical background, measurement and significance. Adv. Cereal Sci. Technol., 10, 471–548.

    CAS  Google Scholar 

  120. Farrand, E. A. (1969) Starch damage and alpha-amylase as basis for mathematical models relation to flour water absorption. Cereal Chem., 46, 103–116.

    CAS  Google Scholar 

  121. Stevens, D. J. (1987) Water absorption of flour, in Cereals in a European Context (ed I. D. Morton), VCH Verlagsgesellschaft mbH, Weinheim and Ellis Horwood, Chichester, pp. 273–284.

    Google Scholar 

  122. Evers, A. D. and Stevens, D. J. (1985) Starch damage. Adv. Cereal Sci. Technol., 7, 321–349.

    CAS  Google Scholar 

  123. Stenvert, N. L. and Kingswood, K. (1977) The influence of the physical structure of the protein matrix on wheat hardness. J. Sci. Food Agric., 28, 11–19.

    Article  CAS  Google Scholar 

  124. Pomeranz, Y., Peterson, C. J. and Mattern, P. J. (1985) Hardness of winter wheats grown under widely different climatic conditions. Cereal Chem., 62, 463–467.

    Google Scholar 

  125. MacRitchie, F. (1980) Physiochemical aspects of some problems in wheat research. Adv. Cereal Sci. Technol., 3, 271–326.

    CAS  Google Scholar 

  126. Greer, E. N. and Hinton, J. J. C. (1950) The two types of wheat endosperm. Nature, 165, 746–748.

    Article  CAS  Google Scholar 

  127. Hoseney, R. C. and Seib, P. A. (1973) Structural differences in hard and soft wheats. Baker’s Digest, 47, 26

    Google Scholar 

  128. Hoseney, R. C. and Seib, P. A. (1973) Structural differences in hard and soft wheats. Baker’s Digest, 47, 56.

    Google Scholar 

  129. Barlow, K. K., Buttrose, S. M., Simmonds, D. H. and Vesk, K. (1973) The nature of the starch protein interface in wheat endosperm. Cereal Chem., 50, 443–454.

    CAS  Google Scholar 

  130. Barlow, K. K., Simmonds, D. H. and Kenrick, K. G. (1973) The localization of water soluble proteins in the wheat endosperm as revealed by fluorescent antibody techniques. Experientia, 29, 229–235.

    Article  CAS  Google Scholar 

  131. Simmonds, D. H., Barlow, K. K. and Wrigley, C. W. (1973) The biochemical basis of grain hardness in wheat. Cereal Chem., 50, 553–562.

    CAS  Google Scholar 

  132. Schofield, J. D. and Greenwell, P. (1987) Wheat starch granule proteins and their technological significance. In Cereals in a European Context, (ed. I. D. Morton) VCH Verlagsgesellschaft mbH, Weinheim and Ellis Horwod, Chichester, pp. 407–420.

    Google Scholar 

  133. Greenwell, P. and Schofield, J D. (1986) A starch granule protein associated with endosperm softness in wheat. Cereal Chem., 63, 379–380.

    CAS  Google Scholar 

  134. Greenwell, P. and Schofield, J. D. (1989) The chemical basis of grain hardness and softness, in Wheat End-Use Properties. Proc ICC’89 Symposium, (ed H. Salovaara) University of Helsinki, pp. 59–72.

    Google Scholar 

  135. Glenn, G. M. and Saunders, R. M. (1990) Physical and structural properties of wheat endosperm associated with grain texture. Cereal Chem., 67, 176–182.

    Google Scholar 

  136. Bakhella, M., Hoseney, R. C. and Lockhart, G. L. (1990) Hardness of Moroccan wheats. Cereal Chem., 67, 246–250.

    Google Scholar 

  137. Symes, K. J. (1965) The inheritance of grain hardness in wheat as measured by the particle size index. Aust. J. Agric. Res., 16, 113–123.

    Article  Google Scholar 

  138. Symes, K. J. (1969) The influence of a gene causing hardness on the milling and baking qualities of two wheats. Aust. J. Agric. Res., 20, 971–979.

    Article  Google Scholar 

  139. Law, C. N., Young, C. F., Brown, J. W. S., Snape, J. W. and Worland, A. J. (1978) The study of grain protein control in wheat using whole chromosome substitution lines, in Seed Improvement by Nuclear Techniques, Intl. Atomic Energy Agency, Vienna, pp.483–502.

    Google Scholar 

  140. Law, C. N. and Krattiger, A. F. (1987) Genetics of grain quality in wheat. In Cereals in a European Context, (ed. I. D. Morton) VCH Verlagsgesellschaft, Weinheim and Ellis Horwood, Chichester, pp. 33–47.

    Google Scholar 

  141. Konzak, C. F. (1977) Genetic control of the content, amino acid composition, and processing properties of proteins in wheat. Adv. Genetics, 19, 407–582.

    Article  CAS  Google Scholar 

  142. Morrison, W. R., Greenwell, P., Law, C. N. and Sulaiman, B. D. (1992) Occurrence of friabilin, a low molecular weight protein associated with grain softness, on starch granules isolated from some wheats and related species. J. Cereal Sci., 15, 143–149.

    Article  CAS  Google Scholar 

  143. Krattiger, A. F. (1989) The genetics and biochemistry of breadmaking quality in wheat (Triticum aestivum L.) PhD thesis, University of Cambridge.

    Google Scholar 

  144. Greenwell, P. (1987) Wheat starch granule proteins and their technological significance, in Proceedings 37th Australia Cereal Chem. Conference, (ed. L. Murray) Roy. Aust. Chem. Inst., Melbourne, pp. 100–103.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schofield, J.D. (1994). Wheat proteins: structure and functionality in milling and breadmaking. In: Bushuk, W., Rasper, V.F. (eds) Wheat. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2672-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2672-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6148-0

  • Online ISBN: 978-1-4615-2672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics