Skip to main content

Raman spectroscopy as a probe of protein structure in food systems

  • Chapter

Abstract

Raman spectroscopy can be a useful tool to probe protein structure in solid and liquid food systems. Bands in the Raman spectrum arising from amide I, amide III and skeletal stretching modes of peptides and proteins are useful for characterizing backbone conformation, including the estimation of secondary structure fractions. Bands attributed to various stretching or bending vibrational modes of functional groups of amino-acid residues can be used to monitor the environment around these side-chains. In particular, valuable information may be obtained on SS or SH groups of cystinyl or cysteinyl residues, CH groups of aliphatic residues, and aromatic rings of tryptophanyl, tyrosinyl and phenylalanyl residues. One important parameter distinguishing Raman spectroscopy from many other spectroscopic methods is its applicability to systems containing high concentrations of proteins, which is critical for the investigation of structural changes during processes such as coagulum or gel formation. Thus, changes in both intramolecular and intermolecular interactions can be studied. In this chapter, examples are presented on the application of Raman spectroscopy to investigate protein structure as a function of processing, such as heating, drying, salt addition or homogenization with lipids, which may be important to correlate with protein functionality in food systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aslanian, D., Négrerie, M. and Chambert, R. (1986) A Raman spectroscopic study on the interaction of an ion-channel protein with a phospholipid in a model membrane system (gramicidin A/L-α-lysophosphatidylcholine). Eur. J. Biochem. 160: 395–400.

    Article  CAS  Google Scholar 

  • Alix, A.J.P., Bernard, L. and Manfait, M. (1985) Spectroscopy of Biological Molecules, Wiley Press, New York.

    Google Scholar 

  • Arêas, E.P.G., Laure, C.J., Gabilan, N., Araujo, P.S. and Kawano, Y. (1989) Raman and infrared studies on the conformation of porcine, pancreatic and Crotalus durissus terrificus phospholipases A2. Biochim. Biophys. Acta 997: 15–26.

    Article  Google Scholar 

  • Bajdor, K.., Peticolas, W.L., Wharton, C.W. and Hester, R.E. (1987) Ultraviolet (239 nm) resonance Raman spectroscopy of an enzyme-substrate intermediate of papain. J. Raman Spectrosc. 18: 211–214.

    Article  CAS  Google Scholar 

  • Bandekar, J. and Krimm, S. (1988) Normal mode spectrum of the parallel-chain β-sheet. Biopolymers 27: 909–921.

    Article  CAS  Google Scholar 

  • Barrett, T.W., Peticolas, W.L. and Robson, R.M. (1978) Laser Raman light-scattering observations of conformational changes in myosin induced by inorganic salts. Biophys. J. 23: 349–358.

    Article  CAS  Google Scholar 

  • Berjot, M, Marx, J. and Alix, A.J.P. (1987) Determination of the secondary structure of proteins from the Raman amide I band: the reference intensity profiles method. J. Raman Spectrosc. 18: 289–300.

    Article  CAS  Google Scholar 

  • Bertoluzza, M., Fagnano, C. and Monti, P. (1989) Spectroscopy of Biological Molecules State of the Art, Proceedings of the 3rd European Conference. Esculapio, Bologna.

    Google Scholar 

  • Byler, D.M. and Susi, H. (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25: 469–487.

    Article  CAS  Google Scholar 

  • Byler, D.M. and Susi, H. (1988) Application of computerized infrared and Raman spectroscopy to conformation studies of casein and other food proteins. J. Ind. Microb. 3: 73–388.

    Article  CAS  Google Scholar 

  • Byler, D.M., Susi, H. and Farrell, H.M. Jr (1983). Laser-Raman spectra, sulfhydryl groups, and conformation of the cystine linkages of β-lactoglobulin. Biopolymers 22: 2507–2511.

    Article  CAS  Google Scholar 

  • Byler, D.M., Farrell, H.M. Jr and Susi, H. (1988) Raman spectroscopic study of casein structure. J. Dairy Sci. 71: 2622–2629.

    Article  CAS  Google Scholar 

  • Caillé, J.-P., Pigeon-Gosselin, M. and Pézolet, M. (1983) Laser Raman study of internally perfused muscle fibers. Effect of Mg2+, ATP and Ca2+ Biochim. Biophys. Acta 758: 121–127.

    Article  Google Scholar 

  • Carew, E.B., Asher, I.M. and Stanley, H.E. (1975) Laser Raman spectroscopy—new probe of myosin substructure. Science 188: 933–935.

    Article  CAS  Google Scholar 

  • Carey, P.R. (1982) Biochemical Applications of Raman and Resonance Raman Spectroscopies. Academic Press, New York.

    Google Scholar 

  • Carey, P.R., Fast, P., Kaplan, H. and Pozsgay, M. (1986) Molecular structure of the protein crystal from Bacillus thuringensis: a Raman spectroscopic study. Biochim. Biophys. Acta 872: 169–176.

    Article  CAS  Google Scholar 

  • Carmona, P., Ramos, J.M., deCózar, M. and Monreal, J.P. (1987) Conformational features of lipids and proteins in myelin membranes using Raman and infrared spectroscopy. J. Raman Spectrosc. 18: 473–476.

    Article  CAS  Google Scholar 

  • Caswell, D.S. and Spiro, T.G. (1986) Tyrosine and tryptophan modification monitored by ultraviolet resonance Raman spectroscopy. Biochim. Biophys. Acta 873: 73–78.

    Article  CAS  Google Scholar 

  • Chen, W., Nie, S., Kuck, J.F.R. Jr and Yu, N.-T. (1991) Near-infrared Fourier transform Raman and conventional Raman studies of calf γ-crystallins in the lyophilized state and in solution. Biophys. J. 60: 447–455.

    Article  CAS  Google Scholar 

  • Chumanov, G.D., Efremov, R.G. and Nabiev, I.R. (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part I. Water-soluble proteins, dipeptides and amino acids. J. Raman Spectrosc. 21: 43–48.

    Article  CAS  Google Scholar 

  • Clark, A.H., Saunderson, D.H.P. and Suggett, A. (1981) Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int. J. Peptide Protein Res. 17: 353–364.

    Article  CAS  Google Scholar 

  • deNoyer, L.K. and Dodd, J.G. (1990) Maximum likelihood smoothing of noisy data. Amer. Laboratory 22(5): 21–27.

    CAS  Google Scholar 

  • deNoyer, L.K. and Dodd, J.G. (1991) Maximum likelihood deconvolution for spectroscopy and chromatography. Amer. Laboratory 23(12): 24D-24H.

    Google Scholar 

  • Frushour, B.G. and Koenig, J.L. (1975) Raman spectroscopy of proteins, in Advances in Infrared and Raman Spectroscopy, Vol. 1 (eds R.J.H. Clark and R.E. Hester), Heyden and Son, London, pp. 35–97.

    Google Scholar 

  • Gerrard, D.L. and Bowley, H.J. (1988) Raman spectroscopy. Anal. Chem. 60: 368R–377R.

    Article  CAS  Google Scholar 

  • Góral, J. and Zichy, V. (1990) Fourier transform Raman studies of materials and compounds of biological importance. Spectrochimica Acta 46A: 253–275.

    Google Scholar 

  • Hamodrakas, S.J., Kamitsos, E.I. and Papadopoulou, P.G. (1987) Laser Raman and infrared spectroscopic studies of protein conformation in the eggshell of the fish Salmo gairdneri. Biochim. Biophys. Acta 913: 163–169.

    Article  CAS  Google Scholar 

  • Harada, I., Takamatsu, T., Tasumi, M. and Lord, R.C. (1982) Raman spectroscopic study of the interaction between sulfate anion and an imidazolium ring in ribonuclease A. Biochemistry 21: 3674–3677.

    Article  CAS  Google Scholar 

  • Harada, I. and Takeuchi, H. (1986) Raman and ultraviolet resonance Raman spectra of proteins and related compounds, in Spectroscopy of Biological Systems, (eds R.J.H. Clark and R.E. Hester), John Wiley and Sons, New York, pp. 113–175.

    Google Scholar 

  • Hirotsuka, M. and Nakai, S. (1990) Raman spectroscopic study of soy protein-soy lecithin complex. 1990 IFT Annual Meeting Abstracts, No. 85, p. 119.

    Google Scholar 

  • Honzatko, R.B. and Williams, R.W. (1982) Raman spectroscopy of avidin: secondary structure, disulfide conformation, and the environment of tyrosine. Biochemistry 21: 6201–6205.

    Article  CAS  Google Scholar 

  • Hudson, B. and Mayne, L. (1986) Ultraviolet resonance Raman spectroscopy of biopolymers. Methods Enzymol. 130: 331–350.

    Article  CAS  Google Scholar 

  • Itoh, K., Osaki, Y., Mizuno, A. and Iryama, K. (1983) Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy. Biochemistry 22: 1773–1778.

    Article  CAS  Google Scholar 

  • Kitagawa, T., Azuma, T. and Hamaguchi, K. (1979) The Raman spectra of Bence-Jones proteins. Disulfide stretching frequencies and dependence of Raman intensity of tryptophan residues on their environments. Biopolymers 18: 451–461.

    Article  CAS  Google Scholar 

  • Krimm, S. (1987) Peptides and proteins, in Biological Applications of Raman Spectroscopy, (ed. T.G. Spiro), John Wiley and Sons, New York, pp. 1–45.

    Google Scholar 

  • Krimm, S. and Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Prot. Chem., 38: 181–364.

    Article  CAS  Google Scholar 

  • Larsson, K. (1976) Raman spectroscopy for studies of interface structure in aqueous dispersions, in Lipids, Vol. 2: Technology, (eds R. Paoletti, G. Jacini and R. Porcellati), Raven Press, New York, pp. 355–360.

    Google Scholar 

  • Larsson, K. and Rand, R.P. (1973) Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems. Biochim. Biophys. Acta 326: 245–255.

    Article  CAS  Google Scholar 

  • Levin, I.W. and Lewis, E.N. (1990) Fourier transform Raman spectroscopy of biological materials. Anal. Chem. 62: 1101A–1111A.

    CAS  Google Scholar 

  • Li-Chan, E. and Nakai, S. (1991a) Importance of hydrophobicity of proteins in food emulsions, in Microemulsions and Emulsion in Foods, (eds M. El-Nokaly and D. Cornell), ACS Symposium Series No. 448, American Chemical Society, Washington DC, pp. 193–212.

    Google Scholar 

  • Li-Chan, E. and Nakai, S. (1991b) Raman spectroscopic study of thermally and/or dithiothreitol induced gelation of lysozyme. J. Agric. Food Chem. 39: 1238–1245.

    Article  CAS  Google Scholar 

  • Lin, V.J.C. and Koenig, J.L. (1976) Raman studies of bovine serum albumin. Biopolymers 15: 203–218.

    Article  CAS  Google Scholar 

  • Lippert, J.L., Lindsay, R.M. and Schultz, R. (1981) Laser Raman characterization of conformational changes in sarcoplasmic reticulum induced by temperature, Ca2+ and Mg2+ J. Biol. Chem. 256: 12411–12416.

    CAS  Google Scholar 

  • Lippert, J.L., Tyminski, D. and Desmeules, P.J. (1976) Determination of the secondary structure of proteins by laser Raman spectroscopy. J. Amer. Chem. Soc. 98: 7075–7080.

    Article  CAS  Google Scholar 

  • Lord, R.C. and Yu, N.-T. (1970) Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. J. Mol. Biol. 50: 509–524.

    Article  CAS  Google Scholar 

  • Maxfield, F.R. and Scheraga, H.A. (1977) A Raman spectroscopic investigation of the disulfide conformation in oxytocin and lysine vasopressin. Biochemistry 16: 4443–4449.

    Article  CAS  Google Scholar 

  • Melander, W. and Horvath, C. (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 183: 200–215.

    Article  CAS  Google Scholar 

  • Mikkelsen, R.B., Verma, S.P. and Wallach, D.F.H. (1978) Effect of transmembrane ion gradients on Raman spectra of sealed hemoglobin-free erythrocyte membrane vesicles. Proc. Natl. Acad. Sci. USA 75: 5478–5482.

    Article  CAS  Google Scholar 

  • Miura, T., Takeuchi, H. and Harada, I. (1991) Raman spectroscopic characterization of tryptophan side-chains in lysozyme bound to inhibitors: role of the hydrophobic box in the enzymatic function. Biochemistry 30: 6074–6080.

    Article  CAS  Google Scholar 

  • Nabiev, I.R., Chumanov, G.D. and Efremov, R.G. (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part II. Application of short-and long-range components of SERS to the study of the structure and function of membrane proteins. J. Raman Spectrosc. 21: 49–53.

    Article  CAS  Google Scholar 

  • Nakai, S., Li-Chan, E., Hirotsuka, M., Vazquez, M.C. and Arteaga, G. (1991) Quantitation of hydrophobicity for elucidating the structure-activity relationships of food proteins, in Interactions of Food Proteins, (eds N. Parris and R. Barford), ACS Symposium Series No. 454, American Chemical Society, Washington DC, pp. 42–58.

    Google Scholar 

  • Nakanishi, M., Takesada, H. and Tsuboi, M. (1974) Conformation of the cystine linkages in bovine α-lactalbumin as revealed by its Raman effect. J. Mol. Biol. 89: 241–243.

    Article  CAS  Google Scholar 

  • Nemoto, N., Kiyohara, T., Tsunashima, Y. and Kurata, M. (1983) Raman, IR and CD spectroscopy on aggregates and gels of lysozyme in alcohols. Bull. Inst. Chem. Res. 61: 203–213.

    CAS  Google Scholar 

  • Ni, F. and Scheraga, H.A. (1985) Resolution enhancement in spectroscopy by maximum entropy Fourier self-deconvolution, with applications to Raman spectra of peptides and proteins. J. Raman Spectrosc. 16: 337–349.

    Article  CAS  Google Scholar 

  • Ozaki, Y. (1988) Medical application of Raman spectroscopy. Appl. Spectrosc. Rev. 24: 259–312.

    Article  CAS  Google Scholar 

  • Painter, P.C. (1984) The application of Raman spectroscopy to the characterization of food, in Food Analysis Principles and Techniques Volume 2 Physicochemical Techniques, (eds D.W. Gruenwedel and J.R. Whitaker), Marcel Dekker, New York, pp. 511–545.

    Google Scholar 

  • Painter, P.C. and Koenig, J.L. (1976). Raman spectroscopic study of the proteins of egg white. Biopolymers 15: 2155–2166.

    Article  CAS  Google Scholar 

  • Pande, J., McDermott, M.J., Callender, R.H. and Spectro, A. (1989) Raman spectroscopic evidence for a disulfide bridge in calf γII crystallin. Arch. Biochem. Biophys. 269: 250–255.

    Article  CAS  Google Scholar 

  • Prescott, B., Renugopalakrishnan, B., Glimcher, M.J., Bhushan, A. and Thomas, G.J. Jr. (1986) A Raman spectroscopic study of hen egg yolk phosvitin: structures in solution and in the solid state. Biochemistry 25: 2792–2798.

    Article  CAS  Google Scholar 

  • Przybycien, T.M. and Bailey, J.E. (1989) Structure-function relations in the inorganic salt-induced precipitation of α-chymotrypsin. Biochim. Biophys. Acta 995: 231–245.

    Article  CAS  Google Scholar 

  • Przybycien, T.M. and Bailey, J.E. (1991) Secondary structure perturbations in salt-induced protein precipitates. Biochim. Biophys. Acta 1076: 103–111.

    Article  CAS  Google Scholar 

  • Raman, C.V. (1928) A new radiation. Indian J. Phys. 2: 387–398.

    CAS  Google Scholar 

  • Raman, C.V. and Khrishnan, K.S. (1928) A new type of secondary radiation. Nature 121: 501–502.

    Article  CAS  Google Scholar 

  • Schrader, B., Hoffman, A., Simon, A. and Sawatzki, J. (1991) Can a Raman renaissance be expected via the near-infrared Fourier transform technique? Vibrational Spectroscopy 1: 239–250.

    Article  CAS  Google Scholar 

  • Siamwiza, M.N., Lord, R.C., Chen, M.C., Takamatsu, T., Harada, I., Matsuura, H. and Shimanouchi, T. (1975) Interpretation of the doublet at 850 and 830 cm1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14: 4870–4876.

    Article  CAS  Google Scholar 

  • Strommen, D.P. and Nakamoto, K. (1984) Laboratory Raman Spectroscopy. John Wiley and Sons, New York.

    Google Scholar 

  • Sugeta, H., Go., A. and Miyazawa, T. (1972) S-S and C-S stretching vibrations and molecular conformations of dialkyl disulfides and cystine. Chem. Lett. 1972: 83–86.

    Article  Google Scholar 

  • Sugeta, H., Go, A. and Miyazawa, T. (1973) Vibrational spectra and molecular conformations of dialkyl disulfides. Bull Chem. Soc. Jpn. 46: 3407–34011.

    Article  CAS  Google Scholar 

  • Susi, H. and Byler, D.M. (1983). Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem. Biophys. Res. Comm. 115: 391–397.

    Article  CAS  Google Scholar 

  • Susi, H. and Byler, D.M. (1987) Fourier transform infrared study of proteins with parallel β-chains. Arch. Biochem. Biophys. 258: 465–469.

    Article  CAS  Google Scholar 

  • Susi, H. and Byler, D.M. (1988a) Fourier transform infrared spectroscopy in protein conformation studies, in Methods for Protein Analysis, (eds J.P. Cherry and R.A. Barford), American Oil Chemists’ Society, Champaign, Ill, pp. 235–255.

    Google Scholar 

  • Susi, H. and Byler, D.M. (1988b) Fourier deconvolution of the amide I Raman band of proteins as related to conformation. Appl. Spectrosc. 42: 819–826.

    Article  CAS  Google Scholar 

  • Tu, A.T. (1986) Peptide backbone conformation and microenvironment of protein side-chains, in Spectroscopy of Biological Systems, (eds R.J.H. Clark and R.E. Hester), John Wiley and Sons, New York, pp. 47–112.

    Google Scholar 

  • VanDael, H., Lafaut, J.P. and Van Cauwelaert, F. (1987) Tyrosine group behaviour in bovine α-lactalbumin as revealed by its Raman effect. Eur. Biophys. J. 14: 409–414.

    CAS  Google Scholar 

  • Van de Ven, M., Meijer, J., Verwer, W., Levine, Y.K. and Sheridan, J.P. (1984) Derivative Raman spectroscopy applied to biomembrane systems. J. Raman Spectrosc. 15: 86–89.

    Article  Google Scholar 

  • Van Wart, H.E., Lewis, A., Scheraga, H.A. and Saeva, F.D. (1973) Disulfide bond dihedral angles from Raman spectroscopy. Proc. Natl. Acad. Sci. USA 70: 2619–2623.

    Article  Google Scholar 

  • Verma, S.P. and Wallach, D.F.H. (1977a) Changes of Raman scattering in the CH-stretching region during thermally induced unfolding of ribonuclease. Biochem. Biophys. Res. Comm. 74: 473–479.

    Article  CAS  Google Scholar 

  • Verma, S.P. and Wallach, D.F.H. (1977b) Raman spectra of some saturated, unsaturated and deuterated C18 fatty acids in the HCH-deformation and CH-stretching regions. Biochim. Biophys. Acta 486: 217–227.

    Article  CAS  Google Scholar 

  • Vogel, H. and Jähnig, F. (1986) Models for the structure of outer-membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J. Mol. Biol. 190: 191–199.

    Article  CAS  Google Scholar 

  • Williams, R.W. (1981) Determination of the secondary structure of proteins from the amide I band of the laser Raman spectrum. J. Mol. Biol. 152: 783–813.

    Article  CAS  Google Scholar 

  • Williams, R.W, (1983) Estimation of protein secondary structure from the laser Raman amide I spectrum. J. Mol Biol. 166: 581–603.

    Article  CAS  Google Scholar 

  • Williams, R.W. (1986) Protein secondary structure analysis using Raman Amide I and Amide III spectra. Methods Enzymol. 130: 311–331.

    Article  CAS  Google Scholar 

  • Yada, R.Y., Jackman, R.L. and Nakai, S. (1988) Secondary structure prediction and determination of proteins–a review. Int. J. Peptide Protein Res. 31: 98–108.

    Article  CAS  Google Scholar 

  • Yager, P. and Gaber, B.P. (1987) Membranes, in Biological Applications of Raman Spectroscopy, Vol. 1, (ed. T.G. Spiro), John Wiley and Sons, New York, pp. 204–261.

    Google Scholar 

  • Yu, N.-T. (1977) Raman spectroscopy: A conformational probe in biochemistry. CRC Crit. Rev. Biochem. 4: 229–280.

    Article  CAS  Google Scholar 

  • Yu, N.T., Jo, B.H. and Liu, S.A. (1972). A laser Raman spectroscopic study of the effect of solvation on the conformation of ribonuclease A. J. Amer. Chem. Soc. 94: 7572–7575.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li-Chan, E., Nakai, S., Hirotsuka, M. (1994). Raman spectroscopy as a probe of protein structure in food systems. In: Yada, R.Y., Jackman, R.L., Smith, J.L. (eds) Protein Structure-Function Relationships in Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2670-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2670-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6147-3

  • Online ISBN: 978-1-4615-2670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics