Advertisement

Nisin, A Lantibiotic Produced by Lactococcus Lactis Subsp. Lactis: Properties, Biosynthesis, Fermentation and Applications

  • Luc De Vuyst
  • Erick J. Vandamme

Abstract

Nisin, which has been known for about five decades, is a lanthionine-containing bacteriocin produced by certain Lactococcus lactis subsp. lactis strains. A number of reviews have been published dealing with various aspects of nisin (Berridge, 1953; Hawley, 1957; Schaller, 1960; Hawley, 1962; Marth, 1966; Jarvis & Morisetti, 1969; Polanowski, 1972; Baranova & Egorov, 1973; Lipinska, 1977; Hurst, 1978, 1981, 1983; Rayman & Hurst, 1984; Bucci et al., 1990; Fowler & Gasson, 1991). This chapter attempts to cover all aspects of nisin, with the main emphasis on its properties, biosynthesis and fermentative production, and on its applications. However, the large number of publications on nisin precludes complete coverage of the literature; omissions or partial coverage of literature data should therefore not be considered as a slight to the authors. The genetics of nisin will be discussed in Chapter 6.

Keywords

Lactic Acid Bacterium Nisin Production Lactis Strain Lactococcus Lactis Subsp Nisin Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abee, T., Gao, F. H. & Konings, W. N. (1991). The mechanism of action of the lantibiotic nisin in artificial membranes. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 373–385.Google Scholar
  2. Alifax, R. & Chevalier, R. (1962).Etude de 1a nisinase produite par Streptococcus thermophilus. J. Dairy Res., 29, 233–240.Google Scholar
  3. Allgaier, H., Jung, G., Werner, R. G., Schneider, U. & Zahner, H. (1985).Elucidation of the structure of epidermin, a ribosomally synthesized tetracyclic heterodetic Polypeptide antibiotic. Angew. Chem., 24, 1051–1053.CrossRefGoogle Scholar
  4. Andersen, A. A., Michener, H. D. & Olcott, H. S. (1953). Antibiot. Chemother., 3, 521–526.Google Scholar
  5. Andersson, R. E., Daeschel, M. A. & Hassan, H. M. (1988).Antibacterial activity of plantaricin SIK-83, a bacteriocin produced by Lactobacillus plantarum. Biochimie, 70, 381–390.CrossRefGoogle Scholar
  6. Anonymous (1986). International acceptance of nisin as a food additive. Issue No. 1/86. Aplin & Barrett Ltd, Trowbridge, Wiltshire, England.Google Scholar
  7. Bailey, F. J. & Hurst, A. (1971).Preparation of a highly active form of nisin from Streptococcus lactis. Can. J. Microbiol., 17, 61–67.CrossRefGoogle Scholar
  8. Banerjee, S. & Hansen, J. N. (1988).Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem., 263, 9508–9514.Google Scholar
  9. Baranova, I. P. & Egorov, N. S. (1966).Determination of nisin concentrations. Antibiotiki, 12, 66–69.Google Scholar
  10. Baranova, I. P. & Egorov, N. S. (1967).Influence of different nitrogen compounds on the growth of Streptococcus lactis and nisin formation. Mikrobiologiya, 36, 958–963.Google Scholar
  11. Baranova, I. P. & Egorov, N. S. (1969).Effect of composition of medium and cultivation conditions on growth of Streptococcus lactis and nisin biosynthesis. Prikl. Biokhim. Mikrobiol., 5, 175–182.Google Scholar
  12. Baranova, I. P. & Egorov, N. S. (1970). Effect of amino acids on the growth of Streptococcus lactis and biosynthesis of nisin. Antibiotiki, 15, 686–688.Google Scholar
  13. Baranova, I. P. & Egorov, N. S. (1973).Biosynthesis and properties of the Polypeptide antibiotic nisin. Biol. Nauki., 112, 106–115.Google Scholar
  14. Baranova, I. P. & Egorov, N. S. (1981).Nisin adsorption on substrate solids. Antibiotiki, 26, 753–756.Google Scholar
  15. Baranova, I. P., Egorov, N. S. & Sil’vestrova, O. I. (1973).Auxogram of the lactic acid bacterium Streptococcus lactis strain MGU. Prikl. Biokhim. Mikrobiol., 9, 55–58.Google Scholar
  16. Baranova, I. P., Egorov, N. S. & Grushina, V. A. (1976).Inactivation of the antibiotic nisin. Prikl. Biokhim. Mikrobiol., 12, 627–629.Google Scholar
  17. Baranova, I. P., Egorov, N. S. & Grushina, V. A. (1977).Influence of pH on nisin production by Streptococcus lactis cultures. Prikl. Biokhim. Mikrobiol., 13, 709–713.Google Scholar
  18. Baranova, I. P., Egorov, N. S., Golovkina, G. P. & Grigoryan, A. N. (1980a).Use of fermentative hydrolysates of microbial biomass in media for cultivation of Streptococcus lactis producing nisin. Antibiotiki, 25, 735–738.Google Scholar
  19. Baranova, I. P., Kozlova, Y. I., Grushina, V. A. & Egorov, N. S. (19806).A procedure of nisin concentration determination. Antibiotiki, 25, 266–267.Google Scholar
  20. Baranova, I. P., Kozlova, Y. I. & Egorov, N. S. (1981).Nisin adsorption on substrate particles and the elaboration of the antibiotic extraction method. Antibiotiki, 26, 833–837.Google Scholar
  21. Baranova, I. P., Grushina, V. A., Nikitin, Y. S., Egorov, N. S. & Polin, A. N. (1983).Nisin adsorption on silica adsorbents. Antibiotiki, 28, 258–262.Google Scholar
  22. Baranova, I. P., Grushina, V. A. & Egorov, N. S. (1984).Use of adsorbents for optimization of the process of nisin isolation from culture broth. Antibiotiki, 29, 643–645.Google Scholar
  23. Baranova, I. P., Egorov, N. S. & Grushina, V. A. (1987).Nisin sorption and desorption on different silica adsorbents. Antibiot. Med. Biotekhnol., 32, 437–439.Google Scholar
  24. Baranova, I. P., Egorov, N. S., Isakova, D. M., Khodzhaev, M. N., Popov, A. Y. & Kozlova, Y. I. (1989).Employment of silica adsorbents for isolating nisin from the native solution. Biotekhnologiya, 5, 588–593.Google Scholar
  25. Barber, M., Elliot, G. J., Bordoli, R. S., Green, B. N. & Bycroft, B. W. (1988).Confirmation of the structure of nisin and its major degradation product by FAM-MS and FAM-MS/MS. Experientia, 44, 266–270.CrossRefGoogle Scholar
  26. Barber, R. S., Braude, R. & Hirsch, A. (1952).Growth of pigs given skim milk soured with nisin-producing streptococci. Nature, 169, 200.CrossRefGoogle Scholar
  27. Bardsley, A. (1962a).Antibiotics in food canning. Food Technol. Austr., 14, 532–537.Google Scholar
  28. Bardsley, A. (1962b).Antibiotics in food canning. Food Technol. Austr., 14, 606–611.Google Scholar
  29. Bavin, E. M., Beach, A. S., Falconer, R. & Friedmann, R. (1952).Nisin in experimental tuberculosis. Lancet, 1, 127–129.CrossRefGoogle Scholar
  30. Beach, A. S. (1952).An agar diffusion method for the assay of nisin. J. Gen. Microbiol., 6, 60–63.CrossRefGoogle Scholar
  31. Bell, R. G. & De Lacy, K. M. (1985).The effect of nisin-sodium chloride interactions on the outgrowth of Bacillus licheniformis spores. J. Appl. Bacteriol., 59, 127–132.CrossRefGoogle Scholar
  32. Bell, R. G. & De Lacy, K. M. (1986).Factors influencing the determination of nisin in meat products. J. Food Technol., 21, 1–7.CrossRefGoogle Scholar
  33. Benedict, R. G., Dvonch, W., Shotwell, O. L., Pridham, T. G. & Lindenfelser, L. A. (1952).Cinnamycin, an antibiotic from Streptomyces cinnamoneus nov. sp. Antib. Chemother., 2, 591–594.Google Scholar
  34. Benkerroum, N. & Sandine, W. E. (1988).Inhibitory action of nisin against Listeria monocytogenes. J. Dairy Sci., 71, 3237–3245.CrossRefGoogle Scholar
  35. Benz, R., Jung, G. & Sahl, H.-G. (1991). Mechanism of channel-formation by lantibiotics in black lipid membranes. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 359–372.Google Scholar
  36. Berridge, N. J. (1947).Further purification of nisin. Lancet, 2, 7–8.Google Scholar
  37. Berridge, N. J. (1949).Preparation of the antibiotic nisin. Biochem. J., 45, 486–493.Google Scholar
  38. Berridge, N. J. (1952).Counter-current distribution of nisins. Nature (London), 169, 707–708.CrossRefGoogle Scholar
  39. Berridge, N. J. (1953). The antibiotic nisin and its use in the making and processing of cheese. Chem. Ind., 1158-1161.Google Scholar
  40. Berridge, N. J. & Barrett, J. (1952).A rapid method for the turbidimetric assay of antibiotics. J. Gen. Microbiol., 6, 14–20.CrossRefGoogle Scholar
  41. Berridge, N. J., Newton, G. G. F. & Abraham, E. P. (1952).Purification and nature of the antibiotic nisin. Biochem. J., 52, 529–535.Google Scholar
  42. Bierbaum, G. & Sahl, H.-G. (1985).Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch. Microbiol., 141, 249–254.CrossRefGoogle Scholar
  43. Bierbaum, G. & Sahl, H.-G. (1987).Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol., 169, 5452–5458.Google Scholar
  44. Bierbaum, G. & Sahl, H.-G. (1988).Influence of cationic peptides on the activity of the autolytic endo-ß-N-acetylglucosaminidase of Staphylococcus simulans 22. FEMS Microbiol. Rev., 58, 223–228.Google Scholar
  45. Bierbaum, G. & Sahl, H.-G. (1991). Induction of autolysis of Staphylococcus simulans 22 by Pep5 and nisin and influence of the cationic peptides on the activity of the autolytic enzymes. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 386–396.Google Scholar
  46. Blackburn, P., Polak, J., Gusik, S. & Rubino, S. D. (1989). Nisin compositions for use as enhanced, broad range bacteriocins. International patent application number PCT/US89/02625; International publication number W089/12399. Applied Microbiology Inc., New York.Google Scholar
  47. Bodansky, M. & Perlman, D. (1964).Are peptide antibiotics small proteins? Nature, 204, 840–844.CrossRefGoogle Scholar
  48. Bogorditskaya, V. P., Shillinger, Y. I. & Osipova, I. N. (1970).Hygienic study of food products preserved with the antibiotic nisin. Gig. Sanit., 35, 37–40.Google Scholar
  49. Boone, P. (1966).Mode of action and applications of nisin. Food Manuf., 41, 49–51.Google Scholar
  50. British Standard (1974). Methods for the estimation and differentiation of nisin in processed cheese. BS 4020.Google Scholar
  51. Briz, S. H. (1972).Algunos aspectos complementarios en 1a valoracion de nisina residual en quesos fundidos. Anal. Bromatol., 24, 217–230.Google Scholar
  52. Broadbent, J. R. & Kondo, J. K. (1991).Genetic construction of nisin-producing Lactococcus lactis subsp. cremoris and analysis of a rapid method for conjugation. Appl. Environ. Microbiol., 57, 517–524.Google Scholar
  53. Broadbent, J. R., Chou, Y. G, Gillies, K. R. & Kondo, J. K. (1989).Nisin inhibits several Gram-positive, mastitis-causing pathogens. J. Dairy. Sci., 72, 3342–3345.CrossRefGoogle Scholar
  54. Bruno, M. E. G, Kaiser, A. & Montville, T. J. (1992).Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol., 58, 2255–2259.Google Scholar
  55. Bucci, R., Calamo-Specchia, F. P. & Zanetti, L. (1990).La nisina nella conservazione degli alimenti: aggiornamento bibliografico e rassegna della legislazione inter-nazionale in tema. Ann. Ig., 2, 271–281.Google Scholar
  56. Buchman, G. W. (1988).Mode of action studies with sodium nitrite and the Polypeptide antibiotics nisin and subtilin and isolation and characterization of the genetic element encoding nisin. Ph.D. thesis, University of Maryland, College Park. Buchman, G. W., Banerjee, S. & Hansen, J. N. (1988). Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem., 263, 16260–16266.Google Scholar
  57. Bycroft, B. W., Chan, W. C. & Roberts, G. C. K. (1991). Synthesis and characterization of pro-and prepeptides related to nisin and subtilin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 204–217.Google Scholar
  58. Calderon, D., Collins-Thompson, D. L. & Usborne, W. R. (1985).Shelf-life studies of vacuum-packaged bacon treated with nisin. J. Food Prot., 48, 330–333.Google Scholar
  59. Campbell, L. L. & O’Brien, R. T. (1955).Antibiotics in food preservation. Food Technol., 9, 461–465.Google Scholar
  60. Campbell, L. L. & Sniff, E. E. (1959).Effect of subtilin and nisin on the spores of Bacillus coagulans. J. Bacteriol., 17, 766–770.Google Scholar
  61. Campbell, L. L., Sniff, E. E. & O’Brien, R. T. (1959).Subtilin and nisin as additives that lower the heat-process requirements of canned foods. Food Technol., 13, 462–464.Google Scholar
  62. Carini, S. & Baldini, R. (1969).La presenza di streptococchi produttori di nisina nel latte destinato alla produzione di formaggio grana e sua influenza sulla microflora lattica. Ann. Micr., 19, 9–17.Google Scholar
  63. Carlson, S. & Bauer, H. M. (1957).Nisin, ein antibakterieller Wirkstoff aus Streptococcus lactis unter Berüksichtigung des resistenzproblems. Arch. Hyg. Bakteriol., 141, 445–459.Google Scholar
  64. Carminati, D., Giraffa, G. & Bossi, M. G. (1989).Bacteriocin-like inhibitors of Streptococcus lactis against Listeria monocytogenes. J. Food Prot., 52, 614–617.Google Scholar
  65. Caserio, G., Ciampella, A., Gennari, M. & Barliezizi, A. M. (1979a). Utilization of nisin in cooked sausages and other cured meat products. Ind. Aliment., 18, 1–12, 19.Google Scholar
  66. Caserio, G., Stecchini, M., Pastore, M. & Gennari, M. (19796).The individual and combined effects of nisin and nitrite on the spore germination of Clostridium perfringens in meat mixtures subjected to fermentation. Ind. Aliment., 18, 894–898.Google Scholar
  67. CEC (1992). Reports of the Scientific Committee for Food, 26th series, EUR 13913 EN.Google Scholar
  68. Chan, W. C., Bycroft, B. W., Lian, L.-Y. & Roberts, G. C. K. (1989a).Isolation and characterisation of two degradation products derived from the peptide antibiotic nisin. FEBS Lett., 252, 29–36.CrossRefGoogle Scholar
  69. Chan, W. C., Lian, L.-Y., Bycroft, B. W. & Roberts, G. C. K. (1989b). Confirmation of the structure of nisin by complete 1H n.m.r. resonance assignment in aqueous and dimethyl sulphoxide solution. J. Chem. Soc. Perkin Trans. I, 2539–2567.Google Scholar
  70. Cheeseman, G. C. & Berridge, N. J. (1957).An improved method of preparing nisin. Biochem. J., 65, 603–608.Google Scholar
  71. Cheeseman, G. C. & Berridge, N. J. (1959).Observations on the molecular weight and chemical composition of nisin A. Biochem. J., 71, 185–194.Google Scholar
  72. Chevalier, R., Fournaud, J., Lefebvre, E. & Mocquot, G. (1957).Mise en évidence des streptocoques lactiques inhibiteurs et stimulants dans le lait et les fromages. Ann. Technol. Agric., 2, 117–137.Google Scholar
  73. Chiu, I., Skoog, J. A., Tatini, S. R. & McKay, L. L. (1989). Inhibition of Listeria monocytogenes by associative growth of nisin producing Lactococcus lactis subsp. lactis in fermented milk. J. Animal Sci., 67 (Suppl. 1), 138.Google Scholar
  74. Chung, K.-T., Dickson, J. S. & Crouse, J. D. (1989).Effects of nisin on growth of bacteria attached to meat. Appl. Environ. Microbiol., 55, 1329–1333.Google Scholar
  75. Chung, Y.-J., Steen, M. T. & Hansen, J. N. (1992).The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an Operon that contains a homolog of the hemolysin B transport protein. J. Bacteriol., 174, 1417–1422.Google Scholar
  76. Claypool, L., Heinemann, B., Voris, L. & Stumbo, C. R. (1966).Residence time of nisin in the oral cavity following consumption of chocolate milk containing nisin. J. Dairy Sci., 49, 314–316.CrossRefGoogle Scholar
  77. Coates, M. E., Harrison, G. F., Kon, S. K., Mann, M. E. & Rose, C. D. (1951). Effect of antibiotics and vitamin B12 on the growth of normal and ‘Animal Protein Factor’ deficient chicks. Proc. Biochemical Society, xii-xiii.Google Scholar
  78. Collins-Thompson, D. L., Calderon, C. & Usborne, W. R. (1985).Nisin sensitivity of lactic acid bacteria isolated from cured and fermented meat products. J. Food Prot., 48, 668–670.Google Scholar
  79. Cowell, N. D., Allen, A. R. & Jarvis, B. (1971).The in vivo effect of nisin on the microflora of the oral cavity. J. Appl. Bact., 34, 787–791.CrossRefGoogle Scholar
  80. Cox, G. A. (1934).A simple method for the detecting of “non-acid” milk. N. Z. J. Agric., 49, 231–234.Google Scholar
  81. Craig, A. G. (1991).Mass spectrometric fragmentation of the peptide chain and ß-methyl lanthionine bridges of the polycyclic peptide nisin. Biol. Mass Spectrom., 20, 195–202.CrossRefGoogle Scholar
  82. Cziszar, J. & Pulay, G. (1956).Studies on Streptococcus lactis which produces antibiotics effective against Clostridia. I. The activity spectrum of antibiotic-producing strains, and how to increase their antibiotic production. Proc. 14th. Int. Dairy Congr., 2, 423–430.Google Scholar
  83. Daeschel, M. A., Jung, D.-S. & Watson, B. T. (1991).Controlling wine malolactic fermentation with nisin and nisin-resistant strains of Leuconostoc oenos. Appl. Environ. Microbiol., 57, 601–603.Google Scholar
  84. Delves-Broughton, J. (1990).Nisin and its application as a food preservative. J. Soc. Dairy Technol., 43, 73–76.CrossRefGoogle Scholar
  85. Denny, C. B., Sharpe, L. E. & Bohrer, C. W. (1961).Effects of tylosin and nisin on canned food spoilage bacteria. Appl. Microbiol., 9, 108–110.Google Scholar
  86. De Vuyst, L. (1990). Biosynthese, Fermentatie en Genetica van het Lactococcus lactis subsp. lactis Lantibioticum Nisine. Ph.D. thesis, Faculty of Agricultural Sciences, University of Gent.Google Scholar
  87. De Vuyst, L. & Vandamme, E. J. (1991a). Microbial manipulation of nisin biosynthesis and fermentation. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers, Leiden, pp. 397–409.Google Scholar
  88. De Vuyst, L. & Vandamme, E. J. (1991b). Localization and phenotypic expression of genes involved in the biosynthesis of the Lactococcus lactis subsp. lactis lantibiotic nisin. In Bacteriocins, Microcins and Lantibiotics, ed. R. James, C. Lazdunski & F. Pattus. Springer-Verlag, Berlin, pp. 449–462.Google Scholar
  89. De Vuyst, L. & Vandamme, E. J. (1992).Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol., 138, 571–578.CrossRefGoogle Scholar
  90. De Vuyst, L., Joris, K., Beel, C. & Vandamme, E. J. (1988a). Physiological characterization of the nisin fermentation process. In Proceedings 2nd Netherlands Biotechnology Congress, ed. H. Breteler, P. H. van Lelyveld & K. Ch. A. M. Luyben. Netherlands Biotechnology Society, Amsterdam, pp. 436–442.Google Scholar
  91. De Vuyst, L., Joris, K., Beel, C. & Vandamme, E. J. (1988b).Physiological aspects of the nisin fermentation process. Med. Fac. Landbouwwet., 53, 2065–2069.Google Scholar
  92. De Vuyst, L., De Poorter, G. & Vandamme, E. J. (1989).Nutritional and metabolic regulation of the nisin fermentation process. Med. Fac. Landbouwwet., 54, 1501–1506.Google Scholar
  93. De Vuyst, L., De Poorter, G. & Vandamme, E. J. (1990a). Metabolic control of nisin biosynthesis in Lactococcus lactis subsp. lactis. In Fermentation Technologies, Industrial Applications, ed. P.-L. Yu. Elsevier Applied Science, London, pp. 166–172.Google Scholar
  94. De Vuyst, L., Mulders, J., De Vos, W. M. & Vandamme, E. J. (19906). Phenotypic and genotypic characterization of nisin producing Lactococcus lactis subsp. lactis strains. Abstract Book 6th International Symposium on Genetics of Industrial Microorganisms, p. 186.Google Scholar
  95. De Vuyst, L., Contreras, B., Sablon, E., Bosman, F. & Vandamme, E. J. (1993). Expression of the structural prenisin gene (nisA) of a nisin A producing Lactococcus lactis subsp. lactis strain in Escherichia coli and isolation of prenisin. Submitted for publication.Google Scholar
  96. Dodd, H. M., Horn, N. & Gasson, M. J. (1990).Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol., 136, 555–566.CrossRefGoogle Scholar
  97. Dodd, H. M., Horn, N., Swindell, S. & Gasson, M. J. (1991). Physical and genetic analysis of the chromosomally located transposon Tn5301, responsible for nisin biosynthesis. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 231–242.Google Scholar
  98. Donkersloot, J. A. & Thompson, J. (1990).Simultaneous loss of N5-(carboxyethyl)ornithine synthase, nisin production, and sucrose-fermenting ability by Lactococcus lactis K1. J. Bacteriol., 172, 4122–4126.Google Scholar
  99. Doyle, M. P. (1988).Effect of environmental and processing conditions on Listeria monocytogenes. Food Technol., 42, 169–171.Google Scholar
  100. Eapen, K. C., Sankaran, R. & Vijayaraghavan, P. K. (1983).The present status on the use of nisin in processed foods. J. Food Sci. Technol., 20, 231–240.Google Scholar
  101. Eastoe, J. E. & Long, J. E. (1959).The effect of nisin on the growth of cells and spores of Clostridium welchii in gelatin. J. Appl. Bacteriol., 22, 2–9.Google Scholar
  102. EEC (1983). EEC Commission Directive 83/463/EEC.Google Scholar
  103. Egorov, N. S. & Baranova, I. P. (1966).Effect of conditions of aeration on growth of Streptococcus lactis and nisin formation. Mikrobiologiya, 36, 431–434.Google Scholar
  104. Egorov, N. S. & Shkundova, Y. V. (1964).A biological method for the determination of nisin concentration. Antibiotiki, 1, 88–92.Google Scholar
  105. Egorov, N. S., Baranova, I. P. & Mokhamed, A. K. (1968).Effect of organic acids on growth of Streptococcus lactis and nisin production. Mikrobiologiya, 37, 286–292.Google Scholar
  106. Egorov, N. S., Baranova, I. P. & Kozlova, Y. I. (1971).Optimization of nutrient medium composition for the production of the antibiotic nisin by Streptococcus lactis. Mikrobiologiya, 40, 993–998.Google Scholar
  107. Egorov, N. S., Baranova, I. P. & Sil’vestrova, O. I. (1972).Amino acid requirements of Streptococcus lactis, the producer of nisin. Mikrobiologiya, 41, 805–807.Google Scholar
  108. Egorov, N. S., Baranova, I. P., Maximov, V. N. & Sil’vestrova, O. I. (1973).Investigation of amino acid influence on the biosynthesis of nisin and the growth of Streptococcus lactis with the application of the method of mathematical planning of the experiment. Izv. Akad. Nauk. SSSR. Biol., 1, 99–105.Google Scholar
  109. Egorov, N. S., Baranova, I. P., Grushina, V. A. & Kozlova, Y. I. (1975a).Effect of the initial pH value of the medium on the growth of Streptococcus lactis and the biosynthesis of nisin. Antibiotiki, 21, 499–501.Google Scholar
  110. Egorov, N. S., Kozlova, Y. I. & Grushina, V. A. (1975b).Effects of age and the amount of inoculate on the growth of Streptococcus lactis and its formation of nisin. Mikrobiologiya, 44, 637–640.Google Scholar
  111. Egorov, N. S., Maksimov, V. N., Kozlova, Y. I., Baranova, I. P. & Grushina, V. A. (1975c).Effect of vitamins on the biosynthesis of nisin by a Streptococcus lactis culture. Antibiotiki, 20, 585–588.Google Scholar
  112. Egorov, N. S., Baranova, I. P. & Grushina, V. P. (1976a).The influence of nisin on the own producing culture Streptococcus lactis. Antibiotiki, 21, 39–41.Google Scholar
  113. Egorov, N. S., Baranova, I. P. & Grushina, V. A. (1976b).Effect of initial pH value of medium on growth of Streptococcus lactis and biosynthesis of nisin. Antibiotiki, 21, 499–501.Google Scholar
  114. Egorov, N. S., Baranova, I. P. & Kozlova, Y. I. (1976c).Influence of purine and pyrimidine bases on the growth of Streptococcus lactis and the biosynthesis of nisin. Mikrobiologiya, 45, 100–103.Google Scholar
  115. Egorov, N. S., Baranova, I. P. & Kozlova, Y. I. (1978).Nisin production by immobilized cells of Streptococcus lactis. Antibiotiki, 23, 872–874.Google Scholar
  116. Egorov, N. S., Baranova, I. P. & Kozlova, Y. I. (1979).Procedure for isolating nisin from Streptococcus lactis. Prikl. Biokhim. Mikrobiol., 15, 712–714.Google Scholar
  117. Egorov, N. S., Baranova, I. P., Kozlova, Y. I., Volkov, A. G., Grushina, V. A., Isai, E. I., Isai, P. P. & Sidorenko, A. T. (1980).A new nutrient medium for Streptococcus lactis producing nisin. Antibiotiki, 25, 260–263.Google Scholar
  118. Egorov, N. S., Grushina, V. A., Kozlova, Y. I., Baranova, I. P. & Polin, A. N. (1982).Nisin inactivation in culture of Streptococcus lactis, strain MSU. Antibiotiki, 27, 757–761.Google Scholar
  119. Egorov, N. S., Baranova, I. P. & Kozlova, Y. I. (1985).Mixed cultivation of Streptococcus lactis, strain MGU, and different yeast species. Antib. Med. Biotekhnol., 30, 86–90.Google Scholar
  120. Egorov, N. S., Baranova, I. P., Kozlova, Y. I., Maksimow, V. N., Polin, A. N. & Grushina, V. A. (1986a).Three-component nutrient medium for cultivation of nisin-producing organism Streptococcus lactis, strain MSU. Antib. Med. Biotekhnol., 31, 337–341.Google Scholar
  121. Egorov, N. S., Kozlova, Y. I. & Baranova, I. P. (19866).Joint cultivation of Streptococcus lactis, MSU strain, and various species of yeasts. Antibiot. Med. Biotekhnol., 31, 828–830.Google Scholar
  122. Egorov, N. S., Baranova, I. P. & Khodzhaev, M. N. (1990).Study of nisin, a Polypeptide antibiotic produced by a culture of Streptococcus lactis, strain MSU. Antibiot. Khimioter., 35, 8–10.Google Scholar
  123. El-Bedawey, A. E., El-Sherbiny, A. M., Zaki, M. S. & Khalil, A. H. (1985a).The effect of certain antibiotics on the keeping quality of bolti fish (Tilapia nilotica). Nahr., 29, 665–670.CrossRefGoogle Scholar
  124. El-Bedawey, A. E., Zaki, M. S., El-Sherbiney, A. M. & Khalil, A. H. (1985b).The effect of certain antibiotics on bolti fish (Tilapia nilotica) preservation. Nahr., 29, 303–308.CrossRefGoogle Scholar
  125. El-Sadek, G. M., Mahmoud, S. A. & Dawood, A. H. (1976a).Effect of nisin on the germination and proliferation of spores of some aerobic spore-formers in nutrient medium. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 131, 259–263.Google Scholar
  126. El-Sadek, G. M., Mahmoud, S. A. & Dawood, A. H. (19766).Effect of nisin on reducing the thermal process in commercially sterilized milk. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 131, 285–290.Google Scholar
  127. Falahee, M. B., Adams, M. R., Dale, J. W. & Gower, C. G. (1989). Development of an immunoassay for nisin. J. Appl. Bacteriol., 67, xxvi.Google Scholar
  128. Falahee, M. B., Adams, M. R. & Dale, J. W. (1990). Investigation of bacteriocins from lactic acid bacteria and lantibiotics with a nisin ELISA. FEMS Microbiol. Rev., 87, E10, 88.Google Scholar
  129. Falconer, R. (1952). Brit. Pat. 683423.Google Scholar
  130. FAO/WHO Expert Committee on Food Additives (1969). Specifications for identity and purity of some antibiotics. Twelfth report. WHO Technical Report Series, No. 430.Google Scholar
  131. Federal Register. (1988).Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed. Reg., 53, 11247–11251.Google Scholar
  132. Fowler, G. G. (1973).Toxicology of nisin. Food. Cosm. Toxicol., 11, 351–352.CrossRefGoogle Scholar
  133. Fowler, G. G. (1979).The potential of nisin. Food Manuf., 54, 57–59.Google Scholar
  134. Fowler, G. G. (1981). Nisin: will it be used here? Food Eng., 82-83.Google Scholar
  135. Fowler, G. G. & Gasson, M. J. (1991). Antibiotics — nisin. In Food Preservatives, ed. N. J. Russell & G. W. Gould. Blackie and Son Ltd, Glasgow, pp. 134–152.Google Scholar
  136. Fowler, G. G. & McCann, B. (1971).The growing use of nisin in the dairy industry. Austr. J. Dairy Technol., 26, 44–46.Google Scholar
  137. Fowler, G. G. & McCann, B. (1972).The use of nisin in the food industry. Food Ind. (South Africa), 25, 49–55.Google Scholar
  138. Fowler, G. G., Jarvis, B. & Tramer, J. (1975). The assay of nisin in foods. In Some Methods for Microbiological Assay, ed. R. G. Board & D. W. Lovelock. Academic Press, London, pp. 91–105.Google Scholar
  139. Frazer, A. C., Sharott, M. & Hickman, J. R. (1962).The biological effects of food additives. I. Nisin. J. Sci. Food Agr., 13, 32–42.CrossRefGoogle Scholar
  140. Fredenhagen, A., Fendrich, G., Märki, F., Märki, W., Grüner, J., Raschdorf, F. & Peter, H. H. (1990).Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin. J. Antibiot., 43, 1403–1411.CrossRefGoogle Scholar
  141. Freund, S., Jung, G., Gutbrod, O., Folkers, G., Gibbons, W. A., Allgaier, H. & Werner, R. (1991).The solution structure of the lantibiotic gallidermin. Biopolymers, 31, 803–811.CrossRefGoogle Scholar
  142. Friedmann, R. & Beach, S. A. (1950). New methods of assay for the antibiotic nisin. J. Gen. Microbiol., 5, V.Google Scholar
  143. Friedmann, R. & Epstein, C. (1951).The assay of the antibiotic nisin by means of a reductase (resazurin) test. J. Gen. Microbiol., 5, 830–839.CrossRefGoogle Scholar
  144. Froseth, B. R. & McKay, L. L. (1991).Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar. diacetylactis DRC3. Appl. Environ. Microbiol., 54, 2636–2639.Google Scholar
  145. Froseth, B. R., Herman, R. E. & McKay, L. L. (1988).Cloning of nisin resistance determinant and replication origin on 7.6 kilobase Eco RI fragment of pNP40 from Streptococcus lactis subsp. diacetylactis DRC3. Appl. Environ. Microbiol., 54, 2136–2139.Google Scholar
  146. Fuchs, P. G., Zajdel, J. & Dobrzanski, W. T. (1975).Possible plasmid nature of the determinant for production of the antibiotic nisin in some strains of Streptococcus lactis. J. Gen. Microbiol., 88, 189–192.CrossRefGoogle Scholar
  147. Fukase, K., Kitazawa, M., Sano, A., Shimbo, K., Fujita, H., Horimoto, S., Wakamiya, T. & Shiba, T. (1988).Total synthesis of peptide antibiotic nisin. Tetr. Lett., 29, 795–798.CrossRefGoogle Scholar
  148. Galesloot, T. E. (1956).Melkzuurbacteriën die het antibioticum van Streptococcus lactis (nisine) onwerkzaam maken. Ned. Melk Zuiveltijdschr., 10, 143–155.Google Scholar
  149. Galesloot, T. E. (1957).Invloed van nisine op die bacteriën welke betrokken zijn of kunnen zijn bij bacteriologische processen in kaas en smeltkaas. Ned. Melk Zuiveltijdschr., 11, 58–73.Google Scholar
  150. Galesloot, T. E. & Hassing, F. (1964).Bestendigheid van het nisinegehalte van Edammer en Goudse kaas bereid uit gepasteuriseerde melk met een nisinevormend zuursel. Ned. Melk Zuiveltijdschr., 18, 177–181.Google Scholar
  151. Galesloot, T. E. & Pette, J. W. (1956).Het bepalen van het gehalte aan nisine van antibiotische zuursels en culturen en van met antibiotische zuursels bereide kaas. Ned. Melk Zuiveltijdschr., 10, 137–142.Google Scholar
  152. Galesloot, T. E. & Pette, J. W. (1957).De vorming van normale ogen in met antibiotische zuursels bereide Edammerkaas. Ned. Melk Zuiveltijdschr., 11, 144–151.Google Scholar
  153. Gao, F. H., Abee, T. & Konings, W. N. (1991).Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ. Microbiol., 57, 2164–2170.Google Scholar
  154. Gasson, M. J. (1984).Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett., 21, 7–10.CrossRefGoogle Scholar
  155. Gibbs, B. M. & Hurst, A. (1964). Limitations of nisin as a preservative in non dairy foods. In Microbial Inhibitors in Food, ed. N. Molin. Almqvist and Wiksell, Stockholm, pp. 151–165.Google Scholar
  156. Gillespy, T. G. (1957). Nisin trials. Fruit and Veg. Cann. Quick Freez. Res. Assoc, Leaflet No. 3, Chipping Campden, Glos, England.Google Scholar
  157. Gireesh, T., Davidson, B. E. & Hillier, A. J. (1992).Conjugal transfer in Lactococcus lactis of a 68-kilobase-pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. Microbiol., 58, 1670–1676.Google Scholar
  158. Gontzea, J., Toma, C., Barduta, Z., Moldovan, E., Calinescu, S. & Mavromati, E. (1973). Lait, 53, 40.CrossRefGoogle Scholar
  159. Gonzalez, C. F. & Kunka, B. S. (1985).Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol., 49, 627–633.Google Scholar
  160. Goodman, M., Palmer, D. E., Mierke, D., Ro, S., Nunami, K., Wakamiya, T., Fukase, K., Horimoto, S., Kitazawa, M., Fujita, H., Kubo, A. & Shiba, T. (1991). Conformations of nisin and its fragments using synthesis, NMR and computer simulations. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 59–75.Google Scholar
  161. Gould, G. W. (1964). Effect of food preservatives on the growth of bacteria from spores. In Microbial Inhibitors in Foods, ed. N. Molin. Almqvist & Wiksell, Stockholm, pp. 17–24.Google Scholar
  162. Gould, G. W. & Hurst, A. (1962). Inhibition of Bacillus spore development of nisin and subtilin. 8th Int. Congr. Microbiol., A2, 11.Google Scholar
  163. Gowans, J. L., Smith, N. & Florey, H. W. (1952).Some properties of nisin. Brit. J. Pharmacol. Chemother., 7, 438–449.Google Scholar
  164. Graeffe, T., Rintala, H., Paulin, L. & Saris, P. (1991). A natural nisin variant. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 260–268.Google Scholar
  165. Gregory, M. E., Henry, K. M. & Kon, S. K. (1964).Nutritive properties of freshly prepared and stored evaporated milks manufactured by a normal commercial procedure or by reduced thermal processes in the presence of nisin. J. Dairy Res., 31, 113–119.CrossRefGoogle Scholar
  166. Gross, E. (1975). Subtilin and nisin: the chemistry and biology of peptides with α, β-unsaturated amino acids. In Peptides: Chemistry, Structure and Biology, ed. R. Walter & J. Meyenhofer. Ann Arbor Science Publishers, Ann Arbor, pp. 31–42.Google Scholar
  167. Gross, E. (1977). α, β-Unsaturated and related amino acids in peptides and proteins. In Protein Cross-Linking, ed. M. Friedmann. Plenum Press, New York, pp. 131–153.Google Scholar
  168. Gross, E. & Morell, J. L. (1967).The presence of dehydroalanine in the antibiotic nisin and its relationship to activity. J. Am. Chem. Soc., 89, 2791–2792.CrossRefGoogle Scholar
  169. Gross, E. & Morell, J. L. (1968).The number and nature of α β-unsaturated amino acids in nisin. FEBS Lett., 2, 61–64.CrossRefGoogle Scholar
  170. Gross, E. & Morell, J. L. (1970).Nisin. The assignment of sulfide bridges of β-methyllanthionine to a novel bicyclic structure of identical ring size. J. Am. Chem. Soc., 92, 2919–2920.CrossRefGoogle Scholar
  171. Gross, E. & Morell, J. L. (1971a).The structure of nisin. J. Am. Chem. Soc., 93, 4634–4635.CrossRefGoogle Scholar
  172. Gross, E. & Morell, J. L. (1971b). Peptide with alpha,beta-unsaturated amino acids. In Peptides 1969, ed. E. Scoffone. Elsevier/North-Holland, Amsterdam, pp. 356–360.Google Scholar
  173. Gross, E., Morell, J. L. & Craig, L. C. (1969).Dehydroalanyllysine: identical COOH-terminal structures in the peptide antibiotics nisin and subtilin. Biochemistry, 62, 952–956.Google Scholar
  174. Gross, E., Kiltz, H. H. & Nebelin, E. (1973).Subtilin. VI. Die structur des subtilins. H.-Z. Z. Physiol. Chem., 354, 810–812.Google Scholar
  175. Grushina, V. A., Baranova, I. P. & Egorov, N. S. (1979).Nisin accumulation dynamics in a Streptococcus lactis culture. Prihl. Biokhim. Mikrobiol., 15, 472–474.Google Scholar
  176. Grushina, V. A., Baranova, I. P. & Egorov, N. S. (1980).Nisin adsorption on cells of Streptococcus lactis. Antibiotiki, 25, 495–499.Google Scholar
  177. Grushina, V. A., Baranova, I. P. & Egorov, N. S. (1981).Conditions for nisin adsorption by Streptococcus lactis cells. Antibiotiki, 25, 837–841.Google Scholar
  178. Gudkov, A. V., Lubimova, L. A., Trofimova, T. I., Sileva, M. N. & Litvinova, M. N. (1973a).Determination of nisin activity by resazurin method. Antibiotiki, 18, 346–350.Google Scholar
  179. Gudkov, A. V., Trofimova, T. I., Dolidze, G. G., Lynbimova, L. A., Sileva, M. N. & Blagushnia, R. F. (1973).Comparison of nisin preparations of English, Polish and Soviet manufacture. Antibiotiki, 18, 162–165.Google Scholar
  180. Gupta, K. G. (1969).Effect of monovalent and divalent ions upon the activity of nisin against Micrococcus flavus. Folia Microbiol. Praha, 14, 36–39.CrossRefGoogle Scholar
  181. Gupta, K. G., Sidhu, R. & Yadav, N. K. (1972). Effect of various sugars and their derivatives upon the germination of Bacillus spores in the presence of nisin. J. Food Sci., 37, 971CrossRefGoogle Scholar
  182. Hall, R. H. (1963). The production of nisin. Patent specification 916, 351.Google Scholar
  183. Hall, R. H. (1966).Nisin and food preservation. Proc. Biochem., 1, 461–464.Google Scholar
  184. Hammes, W. P., Winter, J. & Kandier, O. (1979).The sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis. Arch. Microbiol., 123, 275–279.CrossRefGoogle Scholar
  185. Hansen, J. N., Chung, Y. J., Liu, W. & Steen, M. T. (1991). Biosynthesis and mechanism of action of nisin and subtilin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ECSOM Science Publishers B.V., Leiden, pp. 287–302.Google Scholar
  186. Hara, S., Yakazu, K., Nakakawaji, K., Takenchi, T., Kobayashi, T., Sata, M., Imai, Z. & Shibuya, T. (1962).An investigation of toxicity of nisin with a particular reference to experimental studies of its oral administration and influences on digestive enzymes. Tokyo Med. Univ. J., 20, 175.Google Scholar
  187. Harris, L. J., Daeschel, M. A., Stiles, M. E. & Klaenhammer, T. R. (1989).Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Prot., 52, 384–387.Google Scholar
  188. Harris, L. J., Fleming, H. P. & Klaenhammer, T. R. (1991).Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A, and UAL500 to nisin. J. Food Prot., 54, 836–840.Google Scholar
  189. Harris, L. J., Fleming, H. P. & Klaenhammer, T. R. (1992).Characterization of two nisin-producing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation. Appl. Environ. Microbiol., 58, 1477–1483.Google Scholar
  190. Hawley, H. B. (1955).The development and use of nisin. J. Appl. Bacteriol., 18, 388–395.CrossRefGoogle Scholar
  191. Hawley, H. B. (1957). Nisin in food technology. Food Mfr., 32, 370–376, 430-434.Google Scholar
  192. Hawley, H. B. (1958).Uber die zulässigkeit und anerkennung von nisin als lebensmit-telzusatz. Milchwissenschaft, 6, 257–259.Google Scholar
  193. Hawley, H. B. (1961).‘Nisin’ — Thermal adjunct for processing meats to be packaged in plastics film. Packaging, 32, 93–96.Google Scholar
  194. Hawley, H. B. (1962). The uses of antibiotics in canning. In Antibiotics in Agriculture, ed. M. Woodbine. Butterworth, London, pp. 272–288.Google Scholar
  195. Hawley, H. B. & Hall, R. H. (1957). The production of nisin. Patent 844, 782.Google Scholar
  196. Hayashi, F., Nagashima, K., Terui, Y., Kawamura, Y., Matsumoto, K. & Itazaki, H. (1990). J. Antibiot., 43, 1421–1430.CrossRefGoogle Scholar
  197. Heinemann, B. & Williams, R. (1966).The inactivation of nisin by pancreatin. J. Dairy Sci., 49, 312–313.CrossRefGoogle Scholar
  198. Heinemann, B., Stumbo, C. R. & Scurlock, A. (1964).Use of nisin in preparing beverage-quality sterile chocolate-flavoured milk. J. Dairy Sci., 47, 8–12.CrossRefGoogle Scholar
  199. Heinemann, B., Voris, L. & Stumbo, C. R. (1965).Use of nisin in processing food products. Food Technol., 19, 592–596.Google Scholar
  200. Henning, S., Metz, R. & Hammes, W. P. (1986a).Studies on the mode of action of nisin. Int. J. Food Microbiol., 3, 121–134.CrossRefGoogle Scholar
  201. Henning, S., Metz, R. & Hammes, W. P. (1986fr).New aspects for the application of nisin to food products based on its mode of action. Int. J. Food Microbiol., 3, 135–141.CrossRefGoogle Scholar
  202. Hersem, A. C. & Hulland, E. D. (1969). Canned Foods: An Introduction to Their Microbiology. J & A Churchill, London.Google Scholar
  203. Hirsch, A. (1950).The assay of the antibiotic nisin. J. Gen. Microbiol., 4, 70–83.CrossRefGoogle Scholar
  204. Hirsch, A. (1951a).Various antibiotics from one strain of Streptococcus lactis. Nature, 167, 1031–1032.CrossRefGoogle Scholar
  205. Hirsch, A. (1951b).Growth and nisin production of a strain of Streptococcus lactis. J. Gen. Microbiol., 5, 208–221.CrossRefGoogle Scholar
  206. Hirsch, A. (1952).The evolution of the lactic streptococci. J. Dairy Res., 19, 290–293.CrossRefGoogle Scholar
  207. Hirsch, A. (1954).Some Polypeptide antibiotics. J. Appl. Bacteriol., 17, 108–115.CrossRefGoogle Scholar
  208. Hirsch, A. & Grinsted, E. (1951).The differentiation of the lactic streptococci and their antibiotics. J. Dairy Res., 18, 198–204.CrossRefGoogle Scholar
  209. Hirsch, A. & Grinsted, E. (1954).Methods for the growth and enumeration of anaerobic spore-formers from cheese, with observations on the effect of nisin. J. Dairy Res., 21, 101–110.CrossRefGoogle Scholar
  210. Hirsch, A. & Mattick, A. T. R. (1949).Some recent applications of nisin. Lancet, 2, 190–193.CrossRefGoogle Scholar
  211. Hirsch, A. & Wheater, D. M. (1951).The production of antibiotics by streptococci. J. Dairy Res., 18, 193–197.CrossRefGoogle Scholar
  212. Hirsch, A., Grinsted, E., Chapman, H. R. & Mattick, A. T. R. (1951).A note on the inhibition of an anaerobic sporeformer in Swiss-type cheese by a nisin-producing Streptococcus. J. Dairy Res., 18, 205–207.CrossRefGoogle Scholar
  213. Hitchins, A. D., Gould, G. W. & Hurst, A. (1963).The swelling of bacterial spores during germination and outgrowth. J. Gen. Microbiol., 30, 445–453.CrossRefGoogle Scholar
  214. Horn, N., Swindell, S., Dodd, H. & Gasson, M. (1991).Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet., 228, 129–135.CrossRefGoogle Scholar
  215. Houben, J. H. & Krol, B. (1985).Controlling growth of Streptococcus faecium in a ham model with heat and ethylenediamine tetraacetic acid, tertiary butylhydroquinone or nisin. Meat Sci., 13, 205.CrossRefGoogle Scholar
  216. Hoyle, M. & Nichols, A. A. (1948).Inhibitory strains of lactic streptococci and their significance in the selection of cultures for starter. J. Dairy Res., 15, 398–408.CrossRefGoogle Scholar
  217. Hugenholtz, J. & De Veer, G. J. C. M. (1991). Application of nisin A and nisin Z in dairy technology. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 440–447.Google Scholar
  218. Hunter, G. J. E. & Whitehead, H. R. (1944). J. Dairy Res., 13, 123.CrossRefGoogle Scholar
  219. Hurst, A. (1966a).Biosynthesis of the antibiotic nisin by whole Streptococcus lactis organisms. J. Gen. Microbiol., 44, 209–220.CrossRefGoogle Scholar
  220. Hurst, A. (1966b).Biosynthesis of the antibiotic nisin and other basic peptides by Streptococcus lactis grown in batch culture. J. Gen. Microbiol., 45, 503–513.CrossRefGoogle Scholar
  221. Hurst, A. (1967).Function of nisin and nisin-like basic proteins in the growth cycle of Streptococcus lactis. Nature, 214, 1232–1234.CrossRefGoogle Scholar
  222. Hurst, A. (1968).Apparent destruction of nisin by the producer organism before initiation of growth of Streptococcus lactis. Nature, 219, 403–404.CrossRefGoogle Scholar
  223. Hurst, A. (1969).Change in the absorbancy of bacterial suspensions before initiation of growth. J. Bacteriol, 97, 1062–1068.Google Scholar
  224. Hurst, A. (1972).Interactions of food-starter cultures and food-borne pathogens: the antagonism between Streptococcus lactis and sporeforming microbes. J. Milk Food Technol., 35, 418–423.Google Scholar
  225. Hurst, A. (1978). Nisin: its preservative effect and function in the growth cycle of the producer organism. In Streptococci, ed. F. A. Skinner & L. B. Quesnel. Academic Press, London, pp. 297–314.Google Scholar
  226. Hurst, A. (1981). Adv. Appl. Microbiol., 27, 85–123.CrossRefGoogle Scholar
  227. Hurst, A. (1983). Nisin and other inhibitory substances from lactic acid bacteria. In Antimicrobials in Foods, ed. A. L. Branen & P. M. Davidson. Marcel Dekker, New York, pp. 327–351.Google Scholar
  228. Hurst, A. & Dring, G. J. (1968).The relation of the length of lag phase of growth to the synthesis of nisin and other basic proteins by Streptococcus lactis grown under different cultural conditions. J. Gen. Microbiol., 50, 383–390.CrossRefGoogle Scholar
  229. Hurst, A. & Kruse, H. (1970).The correlation between change in absorbancy, calcium uptake, and cell-bound nisin activity in Streptococcus lactis. Can. J. Microbiol., 16, 1205–1211.CrossRefGoogle Scholar
  230. Hurst, A. & Kruse, H. (1972).Effect of secondary metabolites on the organisms producing them: effect of nisin on Streptococcus lactis and enterotoxin B on Staphylococcus aureus. Antimicrob. Agents Chemother., 1, 277–279.CrossRefGoogle Scholar
  231. Hurst, A. & Lazarus, W. (1968).Calcium uptake during growth of Streptococcus lactis. Nature, 219, 404–405.CrossRefGoogle Scholar
  232. Hurst, A. & Paterson, G. M. (1971).Observations on the conversion of an inactive precursor protein to the antibiotic nisin. Can. J. Microbiol., 17, 1379–1384.CrossRefGoogle Scholar
  233. Hurst, A. & Stubbs, J. M. (1969).Electron microscopic study of membranes and walls of bacteria and changes occurring during growth initiation. J. Bacteriol., 97, 1466–1479.Google Scholar
  234. Hynes, W. L., Ferretti, J. J. & Tagg, J. R. (1993).Cloning of the gene encoding streptococcin A-FF22, a novel lantibiotic produced by Streptococcus pyogenes. and determination of its nucleotide sequence. Appl. Environ. Microbiol., 59, 1969–1971.Google Scholar
  235. Ingram, L. (1969).Synthesis of the antibiotic nisin: formation of lanthionine and β-methyl-lanthionine. Biochim. Biophys. Acta., 184, 216–219.CrossRefGoogle Scholar
  236. Ingram, L. (1970).A ribosomal mechanism for synthesis of peptides related to nisin. Biochim. Biophys. Acta., 224, 263–265.CrossRefGoogle Scholar
  237. Ingram, L., Tombs, M. P. & Hurst, A. (1967). Mobility-molecular weight relationships of small proteins and peptides in acrylamide-gel electrophoresis. Anal. Biochem., 20, 24–29.CrossRefGoogle Scholar
  238. Jack, R. W. & Tagg, J. R. (1991). Isolation and partial structure of streptococcin A-FF22. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 171–179.Google Scholar
  239. Janssen, E. F. & Hirschmann, D. J. (1947).Subtilin-an antibacterial product of Bacillus subtilis: culturing conditions and properties. Arch. Biochem., 4, 297.Google Scholar
  240. Jarvis, B. (1966). Observations on the inactivation of nisin by enzymes from Bacillus cereus and Bacillus polymyxa. Chem. Ind., 882.Google Scholar
  241. Jarvis, B. (1967).Resistance to nisin and production of nisin-inactivating enzymes by several Bacillus species. J. Gen. Microbiol., 47, 33–48.CrossRefGoogle Scholar
  242. Jarvis, B. (1970). Enzymic reduction of the C-terminal dehydroalanyl-lysine sequence in nisin. Proc. Biochem. Soc., 119, 56P.Google Scholar
  243. Jarvis, B. & Burke, C. S. (1976). Practical and legislative aspects of the chemical preservation of food. In Inhibition and Inactivation of Vegetative Microbes, ed. F. A. Skinner & W. B. Hugo. Academic Press, New York, pp. 345–367.Google Scholar
  244. Jarvis, B. & Farr, J. (1971).Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim. Biophys. Acta, 227, 232–240.CrossRefGoogle Scholar
  245. Jarvis, B. & Mahoney, R. R. (1969).Inactivation of nisin by alpha-chymotrypsin. J. Dairy Sci., 52, 1448–1450.CrossRefGoogle Scholar
  246. Jarvis, B. & Morisetti, M. D. (1969).The use of antibiotics in food preservation. Int. Biodeterior. Bull., 5, 39–61.Google Scholar
  247. Jarvis, B., Jeffcoat, J. & Cheeseman, G. C. (1968).Molecular weight distribution of nisin. Biochim. Biophys. Acta, 168, 153–155.CrossRefGoogle Scholar
  248. Johnson, I. H., Hayday, H. & Colman, G. (1978).The effects of nisin on the microbial flora of the dental plaque of monkeys (Macaca fascicularis). J. Appl. Bacteriol., 45, 99–109.CrossRefGoogle Scholar
  249. Jones, L. W. (1974).Effect of butterfat on inhibition of Staphylococcus aureus by nisin. Can. J. Microbiol., 20, 1257–1260.CrossRefGoogle Scholar
  250. Jung, G. (1991a).Lantibiotics — Ribosomally synthesized biologically active polypep-tides containing sulfide bridges and α, β-didehydroamino acids. Angew. Chem. Int. Ed. Engl., 30, 1051–1068.CrossRefGoogle Scholar
  251. Jung, G. (1991b). Lantibiotics: a survey. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 1–34.Google Scholar
  252. Jung, G. & Sahl, H.-G. (1991). Nisin and Novel Lantibiotics. ESCOM Science Publishers B.V., Leiden.Google Scholar
  253. Kaletta, C. & Entian, K.-D. (1989).Nisin, a peptide antibiotic: cloning and sequencing of the nis A gene and posttranslational processing of its peptide product. J. Bacterial., 171, 1597–1601.Google Scholar
  254. Kaletta, C., Entian, K.-D., Kellner, R., Jung, G., Reis, M. & Sahl, H.-G. (1989).Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch. Microbiol., 152, 16–19.CrossRefGoogle Scholar
  255. Kaletta, C., Entian, K.-D. & Jung, G. (1991).Prepeptide sequence of Ro 09-0198: the first structural gene of a duramycin type lantibiotic. Eur. J. Biochem., 199, 411–415.CrossRefGoogle Scholar
  256. Kalra, M. S. & Dudani, A. T. (1973).Effect of calcium carbonate on nisin production in a milk culture. Ind. J. Dairy Sci., 26, 146–148.Google Scholar
  257. Kalra, M. S. & Dudani, A. T. (1974).Effect of different inorganic and organic salts on nisin production in a broth culture. Ind. J. Dairy Sci., 29, 109–112.Google Scholar
  258. Kalra, M. S., Dudani, A. T. & Laximinarayana, H. (1973a).Tetrazolium reduction method for assay of nisin. Ind. J. Dairy Sci., 26, 137–138.Google Scholar
  259. Kalra, M. S., Kuila, R. K. & Ranganathan, B. (1973b).Activation of nisin production by UV-irradiation in a nisin-producing strain of Streptococcus lactis. Experientia, 29, 624–625.CrossRefGoogle Scholar
  260. Kellner, R., Jung, G., Horner, T., Zahner, H., Schnell, N., Entian, K.-D. & Götz, F. (1988).Gallidermin: a new lanthionine-containing Polypeptide antibiotic. Eur. J. Biochem., 177, 53–59.CrossRefGoogle Scholar
  261. Kellner, R., Jung, G., Josten, M., Kaletta, C., Entian, K.-D. & Sahl, H.-G. (1989).Pep5: structure elucidation of a large lantibiotic. Angew. Chem., 28, 616–619.CrossRefGoogle Scholar
  262. Kessler, H., Steuernagel, S., Gillessen, D. & Kamiyama, T. (1987).Complete sequence determination and localization of one imino and three sulfide bridges of the nonadecapeptide Ro 09-0198 by homonuclear 2D-NMR spectroscopy. The FQF-RELAYED-NOESY-experiment. Helv. Chim. Acta, 70, 726–741.CrossRefGoogle Scholar
  263. Kettenring, J. K., Malabarba, A., Vékey, K. & Cavalleri, B. (1990).Sequence determination of actagardine, a novel lantibiotic, by homonuelear 2D NMR spectroscopy. J. Antibiot., 43, 1082–1088.CrossRefGoogle Scholar
  264. Kido, Y., Hamakado, T., Yoshida, T., Anno, M., Motoki, Y., Wakamiya, T. & Shiba, T. (1983).Isolation and characterization of ancovenin, a new inhibitqr of angioten-sin I converting enzyme, produced by actinomycetes. J. Antib., 36, 1295–1299.CrossRefGoogle Scholar
  265. Kiss, I., Kiss-Kutz, N., Farkas, J. & Vas, K. (1968).Further data on the application of nisin in pea preservation. Elelmiszertudomany, 2, 51–58.Google Scholar
  266. Klaenhammer, T. R. & Sanozky, R. B. (1985).Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol., 131, 1531–1541.Google Scholar
  267. Klein, C., Kaletta, C., Schnell, N. & Entian, K.-D. (1992).Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol., 58, 132–142.Google Scholar
  268. Kleinkauf, H. & von Döhren, H. (1986). Enzyme systems synthesizing peptide antibiotics. In Regulation of Secondary Metabolite Formation, ed. H. Kleinkauf, H. von Döhren, H. Dornauer & G. Nesemann. VCH, Weinheim, pp. 173–207.Google Scholar
  269. Kleinkauf, H. & von Döhren, H. (1987).Biosynthesis of peptide antibiotics. Ann. Rev. Microbiol., 41, 259–289.CrossRefGoogle Scholar
  270. Kleinkauf, H. & von Döhren, H. (1990).Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem., 192, 1–15.CrossRefGoogle Scholar
  271. Knox, J. R. & Keck, P. C. (1973).Conformation and absolute configuration of β-methyllanthionine. Biochem. Biophys. Res. Commun., 53, 567–571.CrossRefGoogle Scholar
  272. Knox, J. R. & Keck, P. C. (1975).β-Methyllanthionine: a sulfur amino acid in subtilin and nisin antibiotics. Acta Cryst., B31, 2698–2700.Google Scholar
  273. Kogler, H., Bauch, M., Fehlhaber, H.-W., Griesinger, C., Schubert, W. & Teetz, V. (1991). NMR-spectroscopic investigations on mersacidin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 159–170.Google Scholar
  274. Kondo, S., Sezaki, M., Shimura, M., Sato, K. & Hara, T. (1964). J. Antibiot. (Ser. A), 17, 262–263.Google Scholar
  275. Kooy, J. S. (1952).Stammen van Lactobacillus plantarum die antibiotica van Streptococcus lactis onwerkzaam maken. Ned. Melk Zuiveltijdschr., 6, 323–330.Google Scholar
  276. Kooy, J. S. & Pette, J. W. (1952a).Remming van de groei van lactaatsvergistende boterzuurbacteriën door antibiotica van melkzuurstreptoccen. Ned. Melk Zuiveltijdschr., 6, 302–316.Google Scholar
  277. Kooy, J. S. & Pette, J. W. (1952b).Het toepassen van antibiotica afscheidende melkzuurstreptococcen als zuursel byhet tegengaan van boterzuurgisting in kaas. Ned. Melk Zuiveltijdschr., 6, 317–322.Google Scholar
  278. Kordel, M. & Sahl, H.-G. (1986).Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep 5 and nisin. FEMS Microbiol. Lett., 34, 139–144.CrossRefGoogle Scholar
  279. Kordel, M., Benz, R. & Sahl, H.-G. (1988).Mode of action of the staphylococcin-like peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. J. Bacteriol., 170, 84–88.Google Scholar
  280. Kordel, M., Schüller, F. & Sahl, H.-G. (1989).Interaction of the pore forming-peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes. FEBS Lett., 244, 99–102.CrossRefGoogle Scholar
  281. Kozak, W. & Dobrzanski, W. T. (1977).Growth requirements and the effect of organic components of the synthetic medium on the biosynthesis of the antibiotic nisin in Streptococcus lactis strain. Acta Microbiol. Pol., 26, 361–368.Google Scholar
  282. Kozak, W., Rajchert-Trzpil, M. & Dobrzanski, W. T. (1973a).Preliminary observations on the influence of proflavin, ethidium bromide and elevated temperature on the production of the antibiotic nisin by Streptococcus lactis strains. Bulletin de l’Académie Polonaise des Sciences (Class VI), 21, 811–817.Google Scholar
  283. Kozak, W., Rajchert-Trzpil, M., Zajdel, J. & Dobrzanski, W. T. (1973b).Lysogeny in lactic streptococci producing and not producing nisin. Appl. Microbiol., 25, 305–308.Google Scholar
  284. Kozak, W., Rajchert-Trzpil, M. & Dobrzanski, W. T. (1974).The effect of proflavin, ethidium bromide and an elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus lactis. J. Gen. Microbiol., 83, 295–302.CrossRefGoogle Scholar
  285. Kozlova, Y. I., Egorov, N. S., Baranova, I. P. & Maksimov, V. N. (1972).Metabolic kinetics of Streptococcus lactis on initial and optimal media. Mikrobiologiya, 41, 1007–1012.Google Scholar
  286. Kozlova, Y. I., Golikova, T. I., Baranova, I. P. & Egorov, N. S. (1979).Investigation of the influence of KH2PO4 on the growth of Streptococcus lactis and nisin synthesis at constant pH values of the medium. Mikrobiologiya, 48, 443–446.Google Scholar
  287. Kozlova, Y. I., Baranova, I. P. & Egorov, N. S. (1980).Physiological properties of Streptococcus lactis, strain MSU, immobilized cells. Antibiotiki, 25, 870–874.Google Scholar
  288. Kozlova, Y. I., Grushina, V. A., Baranova, I. P. & Egorov, N. S. (1990).Joint culturing of Streptococcus lactis, strain MSU with Proteus vulgaris and Bacillus mesentericus. Mikrobiologiya, 59, 704–707.Google Scholar
  289. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & de Vor, W. M. (1993).Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis and evidence for the involvement of expression of the nisA and nisI genes in producer immunity. Eur. J. Biochem., 216, 281–291.CrossRefGoogle Scholar
  290. Kuipers, O. P., Yap, W. M. G. J., Rollema, H. S., Beerthuyzen, M. M., Siezen, R. J. & De Vos, W. M. (1991). Expression of wild-type and mutant nisin genes in Lactococcus lactis. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 250–259.Google Scholar
  291. Kurahashi, K. & Nishio, C. (1984). Two mechanisms of biosynthesis of antibiotic peptides. In The Cell Membrane, ed. E. Haber. Plenum Publishing Corp., pp. 55-66.Google Scholar
  292. Kurahashi, K., Nishio, C., Babasaki, K., Kudoh, J. & Ikeuchi, T. (1985). From oxalacetate carboxylase to antibiotic peptides—Reminiscences of my association with Dr. F. Lipmann. In Cellular Regulation and Malignant Growth, ed. S. Ebashi. Japan Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin, pp. 177–186.Google Scholar
  293. Leblanc, D. J., Crow, V. L. & Lee, L. N. (1980). Plasmid mediated carbohydrate catabolic enzymes among strains of Streptococcus lactis. In Plasmids and Transposons: Environmental Effects and Maintenance Mechanisms, ed. C. Stuttard & K. R. Rozee. Academic Press, New York, pp. 31–41.Google Scholar
  294. Lee, S. H. & Kim, H. U. (1985a).Studies on the antibiotic nisin produced by Streptococcus lactis IFO 12007. I. The production and purification of nisin. Korean. J. Anim. Sci., 27, 476–479.Google Scholar
  295. Lee, S. H. & Kim, H. U. (1985b).Studies on the antibiotic nisin produced by Streptococcus lactis IFO 12007. II. Activity of nisin against vegetative microbes and spore germination. Korean J. Anim. Sci., 27, 480–483.Google Scholar
  296. Lewis, J. C, Michener, H. D., Stumbo, C. R. & Titus, D. S. (1954).Antibiotics in food processing: Additives accelerating death of spores by moist heat. J. Agr. Food Chem., 2, 298–302.CrossRefGoogle Scholar
  297. Lian, L.-Y., Chan, W. C., Morley, S. D., Roberts, G. C. K., Bycroft, B. W. & Jackson, D. (1991). NMR studies of the solution structure of nisin A and related peptides. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 43–58.Google Scholar
  298. Lian, L.-Y., Chan, W. C., Morley, S. D., Roberts, G. C. K., Bycroft, B. W. & Jackson, D. (1992).NMR studies of the solution structure of nisin A. Biochem. J., 283, 413–420.Google Scholar
  299. Linnett, P. E. & Strominger, J. L. (1973).Additional antibiotic inhibitors of peptidoglycan synthesis. Antimicrob. Agents Chemother., 4, 231–236.CrossRefGoogle Scholar
  300. Lipinska, E. (1956).Microbiological methods of control of butyric acid fermentation in cheese. Acta Microbiol. Pol., 5, 271–275.Google Scholar
  301. Lipinska, E. (1977). Nisin and its applications. In Antibiotics and Antibiosis in Agriculture, ed. M. Woodbine. Butterworth, London, pp. 103–130.Google Scholar
  302. Lipinska, E. & Strzalkowska, M. (1959).Experiments on training pure cheese cultures to resist antibiotics produced by Streptococcus lactis. Int. Dairy Congr. Proc., 2, 572–579.Google Scholar
  303. Lipinska, E., Gudkow, A. W. & Karlikowa, S. N. (1975). Verwendung von nisin bei der käseherstellung. VEB Fachbuchverlag, Leipzig, pp. 85–86.Google Scholar
  304. Liu, W. & Hansen, J. N. (1990).Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol., 56, 2551–2558.Google Scholar
  305. Lloyd, A. G. & Drake, J. J. (1975).Problems posed by essential food preservatives. Br. Med. Bull., 31, 214–219.Google Scholar
  306. Mahmoud, S. A., El-Sadek, G. M. & Dawood, A. H. (1976a).Mode of action of nisin on some representative bacterial spores. Zentralbl. Bakteriol. Parasitenkd. Infek-tionskr. Hyg., 131, 212–221.Google Scholar
  307. Mahmoud, S. A., El-Sadek, G. M. & Dawood, A. H. (1976).Effect of nisin in the presence of L-alanine on the germination and outgrowth of Bacillus subtilis spores. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 131, 264–270.Google Scholar
  308. Mahmoud, S. A., El-Sadek, G. M. & Dawood, A. H. (1976c).Effect of nisin on heat resistance and gas production of some spore-formers. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 131, 271–276.Google Scholar
  309. Mahmoud, S. A., El-Sadek, G. M. & Dawood, A. H. (1976d).Effect of nisin on prolonging the keeping quality of pasteurized milk. Zentralbi. Bakteriol. Parasitenkd. Infektionskr. Hyg., 131, 277–284.Google Scholar
  310. Marth, E. H. (1966).Antibiotics in foods — naturally occurring, developed and added. Residue Rev., 12, 65–161.Google Scholar
  311. Maslennikova, N. M. & Loshina, P. B. (1968).The use of nisin in canned potatoes. Konserv. Ovosh., 1, 12.Google Scholar
  312. Maslennikova, N. M., Shkundova, Y. & Nekhotenova, T. (1968).The effect of nisin on the sterilization procedure of canned whole tomatoes in brine. Konserv. Ovosh. Prom., 23, 7–9.Google Scholar
  313. Mattick, A. T. R. & Hirsch, A. (1944).A powerful inhibitory substance produced by group N streptococci. Nature, 154, 551–552.CrossRefGoogle Scholar
  314. Mattick, A. T. R. & Hirsch, A. (1946).Sour milk and the tubercle bacillus. Lancet, 1, 417–418.Google Scholar
  315. Mattick, A. T. R. & Hirsch, A. (1947).Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet, 2, 5–7.CrossRefGoogle Scholar
  316. McClintock, M., Serres, L., Marzolf, J. J., Hirsch, A. & Mocquot, G. (1952).Action inhibitrice des streptocoques producteurs de nisine sur le développement des sporulés anaérobies dans le fromage de Gruyère fondu. J. Dairy Res., 19, 187–193.CrossRefGoogle Scholar
  317. McKay, L. L. (1983).Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek, 49, 259–274.CrossRefGoogle Scholar
  318. McKay, L. L. & Baldwin, K. A. (1984).Conjugative 40-megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol., 47, 68–74.Google Scholar
  319. Meanwell, L. J. (1943). The influence of raw milk quality on’ slowness’ in cheesemak-ing. Proc. Soc. Agr. Bacteriol., 19.Google Scholar
  320. Michener, H. D., Thompson, P. A. & Lewis, J. C. (1959).Screening for substances which reduce the thermal resistance of bacterial spores. Appl. Microbioi, 7, 166.Google Scholar
  321. Microlife-Technics (1986). Derived nisin producing microorganisms, method of production and use and products obtained thereby. European Patent 0137869.Google Scholar
  322. Mikolajcik, E. M., Reeves, C. B. & Harper, W. J. (1965).Efficacy of nisin as a sporicidal agent in the presence of L-alanine. J. Dairy Sci., 48, 1522–1514.CrossRefGoogle Scholar
  323. Mocquot, G. & Lefebvre, E. (1956).A simple procedure to detect nisin in cheese. J. Appl. Bacteriol., 19, 322–323.CrossRefGoogle Scholar
  324. Mohamed, G. E. E., Seaman, A. & Woodbine, M. (1984). Food antibiotic nisin: comparative effects on Erysipelothrix and Listeria. In Antimicrobials and Agriculture, ed. M. Woodbine. Butterworth, London, pp. 435–442.Google Scholar
  325. Molitor, E. & Sahl, H.-G. (1991). Applications of nisin: a literature survey. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 434–439.Google Scholar
  326. Morell, J. L. & Gross, E. (1973).Configuration of the β-carbon atoms of the β-methyllanthionine residues in nisin. J. Am. Chem. Soc., 95, 6480–6481.CrossRefGoogle Scholar
  327. Morris, S. L., Walsh, R. C. & Hansen, J. N. (1984).Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem., 259, 13590–13594.Google Scholar
  328. Mortvedt, C. I. & Nes, I. F. (1990).Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol., 136, 1601–1607.CrossRefGoogle Scholar
  329. Mortvedt, C. I., Nissen-Meyer, J., Sletten, K. & Nes, I. F. (1991).Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbioi., 57, 1829–1834.Google Scholar
  330. Motlagh, A. M., Johnson, M. C. & Ray, B. (1991). Viability loss of foodborne pathogens by starter culture metabolites. J. Food Prot., 54, 873–878, 884.Google Scholar
  331. Mulders, J. W. M., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. & De Vos, W. M. (1991).Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem., 201, 581–584.CrossRefGoogle Scholar
  332. Murphy, M. C., Steele, J. L., Daly, C. & McKay, L. L. (1988).Concomitant conjugal transfer of reduced-bacteriophage-sensitivity mechanisms with lactose-and sucrose-fermenting ability in lactic streptococci. Appl. Environ. Microbiol., 54, 1951–1956.Google Scholar
  333. Naruse, N., Tenmyo, O., Tomita, K., Konishi, M., Miyaki, T., Kawaguchi, H., Fukase, K., Wakamiya, T. & Shiba, T. (1988).Lanthiopeptin, a new peptide antibiotic: production, isolation and properties of lanthiopeptin. J. Antib., 42, 837–845.CrossRefGoogle Scholar
  334. Nekhotenova, T. I. (1961).The possibility of modifying the sterilization process of green peas by adding nisin. Konserv. Ovosh. Prom., 16, 21–23.Google Scholar
  335. Nes, I. F. (1992). Non-nisin-like bacteriocins in lactic acid bacteria. Paper presented at Biotieteen Päivät, Helsinki, Finland.Google Scholar
  336. Newton, G. G. F., Abraham, E. P. & Berridge, N. J. (1953).Sulphur-containing amino-acids of nisin. Nature, 171, 606.CrossRefGoogle Scholar
  337. Nielsen, P. & Roepstorff, P. (1988).Sample preparation dependent fragmentation in 252-Cf plasma desorption mass spectrometry of the polycyclic antibiotic, nisin. Biom. Environ. Mass Spectrom., 17, 137–141.CrossRefGoogle Scholar
  338. Oberman, H. & Jakubowska, J. (1969).The nisin formation in continuous cultivation of Streptococcus lactis 91. Chemia Spozywcza, 100, 511–516.Google Scholar
  339. Oberman, H. & Libudzisz, Z. (1973). The growth of mixed population of Lactobacillus casei and nisin producing strain of Streptococcus lactis in batch and continuous cultures. Acta Microbiol. Pol. (Series B), 5, 151–161.Google Scholar
  340. Oberman, H. & Pabis, E. (1975).Influence of nisin on productivity of the nisin-producing strain Streptococcus lactis V-20. Acta Aliment. Polon., 1, 221–234.Google Scholar
  341. Oberman, H., Kapluk, B. & Jakubowska, J. (1968).The nisin formation by Streptococcus lactis grown in continuous cultivation. Zeszyty Naukowe Politechniki Lodzkiej, 100, 73–90.Google Scholar
  342. Oberman, H., Kasperkiewicz, T. & Lysiak, B. (1975).Production of nisin by Streptococcus lactis strains after freezing. Acta Aliment. Polon., 1, 53–62.Google Scholar
  343. O’Brien, R. T., Titus, D. S., Devlin, K. A., Stumbo, C. R. & Lewis, J. C. (1956).Antibiotics in food preservation. II. Studies on the influence of subtilin and nisin on the thermal resistance of food spoilage bacteria. Food Technol., 10, 352–355.Google Scholar
  344. Ogden, K. (1986).Nisin: a bacteriocin with a potential use in brewing. J. Inst. Brew., 92, 379–383.Google Scholar
  345. Ogden, K. (1987).Cleansing contaminated pitching yeast with nisin. J. Inst. Brew., 93, 302–307.Google Scholar
  346. Ogden, K. & Tubb, R. S. (1985).Inhibition of beer-spoilage lactic acid bacteria by nisin. J. Inst. Brew., 91, 390–392.Google Scholar
  347. Ogden, K. & Waites, M. J. (1986).The action of nisin on beer-spoilage lactic acid bacteria. J. Inst. Brew., 92, 463–467.Google Scholar
  348. Ogden, K., Waites, M. J. & Hammond, J. R. M. (1988).Nisin and brewing. J. Inst. Brew., 94, 233–238.Google Scholar
  349. Okereke, A. & Montville, T. J. (1992).Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679. Appl. Environ. Microbiol., 58, 2463–2467.Google Scholar
  350. Palmer, D. E., Mierke, D. F., Pattaroni, C., Goodman, M., Wakamiya, T., Fukase, K., Kitazawa, M., Fujita, H. & Shiba, T. (1989).Interactive NMR and computer simulation studies of lanthionine-ring structures. Biopolymers, 28, 397–408.CrossRefGoogle Scholar
  351. Parenti, F., Pagani, H. & Beretta, G. (1976).Gardimycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J. Antibiot., 29, 501–506.CrossRefGoogle Scholar
  352. Phillips, J. D. & Griffiths, M. W. (1986).Estimation of Gram-negative bacteria in milk: a comparison of inhibitor systems for preventing Gram-positive bacterial growth. J. Appl Bacteriol., 60, 491–500.CrossRefGoogle Scholar
  353. Piard, J.-C. (1994). Lacticin 481, a lantibiotic produced by Lactococcus lactis subsp. lactis CNRZ 481. pp. 231–271.Google Scholar
  354. Piard, J.-C., Delorme, F., Giraffa, G., Commissaire, J. & Desmazeaud, M. (1990).Evidence for a bacteriocin produced by Lactococcus lactis CNRZ 481. Neth. Milk Dairy J., 44, 143–158.Google Scholar
  355. Piard, J.-C., Kuipers, O. P., Rollema, H. S., Desmazeaud, M. J. & De Vos, W. M. (1993).Genetic characterization of lacticin 481, a novel lantibiotic produced by L. lactis subsp. lactis CNRZ 481. J. Biol. Chem., 268, 16361–16368.Google Scholar
  356. Polanowski, A. (1972).Aktualny stan badan nad antybiotykiem polipeptydowym-nizyna. Pstepy Mikrobiologii, 11, 25–38.Google Scholar
  357. Poretta, A., Giannone, L. & Casolari, A. (1966).The use of nisin in the processing of peas. Ind. Conserve, 41, 89.Google Scholar
  358. Poretta, A., Casolani, A. & Cassara, A. (1968).The use of nisin in the preparation of tomato juice. Ind. Conserve, 1, 13.Google Scholar
  359. Pridham, T. G., Shotwell, O. L., Stodola, F. H., Lindenfelser, L. A., Benedict, R. G. & Jackson, R. W. (1956).Antibiotics against plant disease. II. Effective agents produced by Streptomyces cinnamoneus forma azacoluta f. nov. Phytopath., 46, 575–581.Google Scholar
  360. Pulay, G. (1956).Research on Streptococcus lactis strains producing antibiotics against Clostridia. II. Unfavourable effects of nisin type antibiotics on the quality of cheese. Int. Dairy Cong. Proc., 2, 432–443.Google Scholar
  361. Radler, F. (1990a).Possible use of nisin in winemaking. I. Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media. Am. J. Enol. Vitic., 41, 1–6.Google Scholar
  362. Radler, F. (1990).Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in the production of wine. Am. J. Enol. Vitic., 41, 7–11.Google Scholar
  363. Ramseier, H. R. (1959).The action of coliform bacteria on the stability of nisin with special regard to the influence of the test medium. Int. Dairy Congr. Proc., 2, 566–571.Google Scholar
  364. Ramseier, H. R. (1960).The action of nisin on Clostridium butyricum. Arch. Mikrobiol., 37, 57–94.CrossRefGoogle Scholar
  365. Rauch, P. J. G. & De Vos, W. M. (1992).Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol., 174, 1280–1287.Google Scholar
  366. Rauch, P. J. G., Beerthuyzen, M. M. & De Vos, W. M. (1990).Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucleic Acids Res., 18, 4253.CrossRefGoogle Scholar
  367. Rauch, P. J. G., Beerthuyzen, N. M. & De Vos, W. M. (1991). Molecular analysis and evolution of conjugative transposons encoding nisin production and sucrose fermentation in Lactococcus lactis. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 243–249.Google Scholar
  368. Rayman, K. & Hurst, A. (1984). Nisin: properties, biosynthesis and fermentation. In Biotechnology of Industrial Antibiotics, ed. E. J. Vandamme. Marcel Dekker, New York, pp. 607–628.Google Scholar
  369. Rayman, K., Aris, B. & Hurst, A. (1981).Nisin: a possible alternative or adjunct to nitrite in the preservation of meats. Appl. Environ. Microbiol, 41, 375–380.Google Scholar
  370. Rayman, K., Malik, N. & Hurst, A. (1983).Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl. Environ. Microbioi., 46, 1450–1452.Google Scholar
  371. Reisinger, P., Scidel, H., Tschesche, H. & Hammes, W. P. (1980).The effect of nisin on murein synthesis. Arch. Microbioi., 127, 187–193.CrossRefGoogle Scholar
  372. Roepstorff, P., Nielsen, P.F., Kamensky, L., Craig, A.G. & Scif, R. (1988).Cf plasma desorption mass spectrometry of a polycyclic peptide antibiotic, nisin. Biomed. Environ. Mass Spectrom., 15, 305–310.CrossRefGoogle Scholar
  373. Rogers, A. M. & Montville, T. J. (1991).Improved agar diffusion assay for nisin quantification. Food Biotechnol., 5, 161–168.CrossRefGoogle Scholar
  374. Rogers, L. A. (1928).The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol., 16, 321–325.Google Scholar
  375. Rogers, L. A. & Whittier, E. O. (1928).Limiting factors in lactic fermentation. J. Bacteriol., 16, 211–214.Google Scholar
  376. Rollema, H. S., Both, P. & Siezen, R. J. (1991). NMR and activity studies of nisin degradation products. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers Ltd, Leiden, pp. 123–130.Google Scholar
  377. Ross, K. F., Ronson, C. W. & Togg, J. R. (1993).Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius ZOP3. Appl. Environ. Micobiol., 59, 2014–2021.Google Scholar
  378. Ruhr, E. & Sahl, H.-G. (1985).Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob. Agents Chemother., 27, 841–845.CrossRefGoogle Scholar
  379. Sahl, H.-G. (1985).Influence of the staphylococcin-like peptide Pep 5 on membrane potential of bacterial cells and cytoplasmic membrane vesicles. J. Bacteriol., 162, 833–836.Google Scholar
  380. Sahl, H.-G. (1991). Pore formation in bacterial membranes by cationic lantibiotics. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 347–358.Google Scholar
  381. Sahl, H.-G. & Brandis, H. (1981).Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J. Gen. Microbiol., 127, 377–384.Google Scholar
  382. Sahl, H.-G. & Brandis, H. (1982).Mode of action of the staphylococcin-like peptide Pep 5 and culture conditions effecting its activity. Zentralbl. Bakteriol. Hyg. I. Abt. Orig. A, 252, 166–175.Google Scholar
  383. Sahl, H.-G. & Brandis, H. (1983).Efflux of low-M r substances from the cytoplasm of sensitive cells caused by the staphylococcin-like agent Pep 5. FEMS Microbiol. Lett., 16, 75–79.CrossRefGoogle Scholar
  384. Sahl, H.-G., Hahn, C. & Brandis, H. (1985).Interaction of the staphylococcin-like peptide Pep 5 with cell walls and isolated cell wall components of Gram-positive bacteria. Zentralbl. Bakteriol. Hyg. A, 260, 197–205.Google Scholar
  385. Sahl, H.-G., Kordel, M. & Benz, R. (1987).Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch. Microbiol., 149, 120–124.CrossRefGoogle Scholar
  386. Sanders, M. E., Leonhard, P. J., Sing, W. D. & Klaenhammer, T. R. (1986).Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol., 52, 1001–1007.Google Scholar
  387. Schaller, A. (1960).Eigenschaften und anwendungsmöglihkeiten von nisin. Die Fruchtsaft-Industrie, 5, 3–10.Google Scholar
  388. Schleifer, K. H., Kraus, J., Dvorak, C., Kilpper-Bälz, R., Collins, M. D. & Fischer, W. (1985).Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. System. Appl. Microbiol., 6, 183–195.CrossRefGoogle Scholar
  389. Schnell, N., Entian, K.-D., Schneider, U., Gotz, F., Zähner, H., Kellner, R. & Jung, G. (1988).Preptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide rings. Nature, 333, 276–278.CrossRefGoogle Scholar
  390. Schnell, N., Entian, K.-D., Götz, F., Hörner, T., Kellner, R. & Jung, G. (1989).Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol. Lett., 58, 263–268.CrossRefGoogle Scholar
  391. Schnell, N., Engelke, G., Augustin, J., Rosenstein, R., Ungermann, V., Götz, F. & Entian, K.-D. (1992).Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur. J. Biochem., 204, 57–68.CrossRefGoogle Scholar
  392. Schüller, F., Benz, R. & Sahl, H.-G. (1989).The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes. Eur. J. Biochem., 182, 181–186.CrossRefGoogle Scholar
  393. Scott, V. N. & Taylor, S. L. (1981a).Effect of nisin on the outgrowth of Clostridium botulinum spores. J. Food Sci., 46, 117–120, 126.CrossRefGoogle Scholar
  394. Scott, V. N. & Taylor, S. L. (1981).Temperature, pH, and spore load effects on the ability of nisin to prevent the outgrowth of Clostridium botulinum spores. J. Food Sci., 46, 121–126.CrossRefGoogle Scholar
  395. Shahani, K. M. (1960).Inhibitory effect of nisin upon various organisms. J. Dairy Sci., 43, 827–832.Google Scholar
  396. Shattock, P. M. F. & Mattick, A. T. R. (1943). J. Hyg. Comb., 43, 173.CrossRefGoogle Scholar
  397. Shehata, A. E., Khalafalla, S. M, Magdoub, M. N. I. & Hofi, A. A. (1976).The use of nisin in the production of sterilized milk drinks. Egyptian J. Dairy Sci., 4, 37–42.Google Scholar
  398. Shehata, A. E., Khalafalla, S. M., El-Magdoub, M. N. I. & Hofi, A. A. (1977).The use of nisin in the production of sterilized milk drinks. Milchwissenschaft, 32, 412–416.Google Scholar
  399. Shiba, T., Wakamiya, T., Fukase, K., Sano, A., Shimbo, K. & Ueki, Y. (1986). Chemistry of lanthionine peptides. Biopolymers, 25, S11–S19.Google Scholar
  400. Shiba, T., Wakamiya, T., Fukase, K., Ueki, Y., Teshima, T. & Nishikawa, M. (1991). Structure of the lanthionine peptides nisin, ancovenin and lanthiopeptin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 113–122.Google Scholar
  401. Shillinger, Y. I., Bogoroditskaya, V. P. & Osipova, I. N. (1969).Hygienic characteristics of a Soviet-made preparation of nisin, an antibiotic employed for preservation of food products. Vop. Pitan., 28, 44–48.Google Scholar
  402. Shkundova, Y. V. (1968).Effect of medium composition on the growth and nisin formation by Streptococcus lactis cultures. Prikl. Biokhim. Mikrobiol., 4, 449–451.Google Scholar
  403. Shtenberg, A. J. (1973).Toxicity of nisin. Food Cosmet. Toxicol., 11, 352.CrossRefGoogle Scholar
  404. Shtenberg, A. J. & Ignat’ev, A. D. (1970).Toxicological evaluation of some combinations of food preservatives. Food Cosmet. Toxicol., 8, 369–380.CrossRefGoogle Scholar
  405. Simon, D. & Chopin, A. (1988).Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie, 70, 559–566.CrossRefGoogle Scholar
  406. Slijper, M., Hilbers, C. W., Konings, R. N. H. & van de Ven, F. J. M. (1989).NMR studies of lantibiotics. Assignment of the 1H-NMR spectrum of nisin and identification of interresidual contacts. FEBS Lett., 252, 22–28.CrossRefGoogle Scholar
  407. Somers, E. B. & Taylor, S. L. (1981).Further studies on the antibotulinal effectiveness of nisin in acidic media. J. Food Sci., 46, 1972–1973.CrossRefGoogle Scholar
  408. Somers, E. B. & Taylor, S. L. (1987).Antibotulinal effectiveness of nisin in pasteurized processed cheese spreads. J. Food Prot., 50, 842–848.Google Scholar
  409. Spelhaug, S. R. & Harlander, S. K. (1989).Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot., 52, 856–862.Google Scholar
  410. Stankiewicz-Berger, H. (1969). Effect of nisin on the lactobacilli that cause greening of cured meat products. Acta Microbiol. Pol. (Ser. B), 1, 117–120.Google Scholar
  411. Stark, P. & Sherman, J. M. (1935).Concerning the habitat of Streptococcus lactis. J. Bacteriol., 30, 639–646.Google Scholar
  412. Steele, J. L. & McKay, L. L. (1986).Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl. Environ. Microbiol., 51, 57–64.Google Scholar
  413. Steen, M. T. & Hansen, J. N. (1991). Structure, expression and evolution of the nisin gene locus in Lactococcus lactis. In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci, ed. G. M. Dunny, P. P. Cleary & L. L. McKay. American Society for Microbiology, Washington DC, pp. 109–114.Google Scholar
  414. Steen, M. T., Chung, Y. J. & Hansen, J. N. (1991).Characterization of the nisin gene as part of a polycistronic Operon in the chromosome of Lactococcus lactis ATCC 11454. Appl. Environ. Microbiol., 57, 1181–1188.Google Scholar
  415. Stevens, K. A., Sheldon, B. W., Klapes, N. A. & Klaenhammer, T. R. (1991).Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl. Environ. Microbiol., 57, 3613–3615.Google Scholar
  416. Stevens, K. A., Klapes, N. A., Sheldon, B. W. & Klaenhammer, T. R. (1992).Antimicrobial action of nisin against Salmonella typhimurium lipopolysaccharide mutants. Appl. Environ. Microbiol., 58, 1786–1788.Google Scholar
  417. Stoffels, G., Nissen-Meyer, J., Gudmundsdottir, A., Sletten, K., Holo, H. & Nes, I. F. (1992).Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl. Environ. Microbiol., 58, 1417–1422.Google Scholar
  418. Stoianova, L. G. & Egorov, N. S. (1990). Fusion of protoplasts of Lactococcus lactis for getting superior production of nisin. FEMS Microbiol. Rev., 87, P35, A60.Google Scholar
  419. Stumbo, C. R., Voris, L., Skaggs, B. G. & Heinemann, B. (1964).A procedure for assaying residual nisin in food products. J. Food Scl., 29, 859–861.CrossRefGoogle Scholar
  420. Sukumar, D., Thompkinson, D. K., Gahlot, D. P. & Mathur, O. N. (1976).Studies on a method of preparation and preservation of kheer. Indian J. Dairy Sci., 29, 316.Google Scholar
  421. Sulzer, G. & Busse, M. (1991).Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances. Int. J. Food Microbiol., 14, 287–296.CrossRefGoogle Scholar
  422. Szadkowska, M., Lipinska, E., Jakubczyk, E. & Lipniewska, D. (1974). Whey media enriched with substances stimulating the synthesis of nisin. Roczniki Instytutu Przemyslu Mleczarskiego (Series 1), 16, 5–13.Google Scholar
  423. Tagg, J. R., Read, R. S. D. & McGiven, A. R. (1971).Bacteriocin production by group A streptococci. Pathol, 3, 277–278.CrossRefGoogle Scholar
  424. Takemoto, K., Umeda, Y., Ishitsuka, H. & Yagi, Y. (1981). Proc. Jpn Soc. Immunol., 11, 363.Google Scholar
  425. Taylor, J. I., Hirsch, A. & Mattick, A. T. R. (1948).The treatment of bovine streptococcal and staphylococcal mastitis with nisin. Vet. Rec., 61, 197–198.Google Scholar
  426. Taylor, K., Gajewska, R., Podhajska, A. & Konopa, G. (1975).Identification of bacteriophages that lyse industrial strains of the producer of the antibiotic nisin. Antibiotiki, 9, 791–793.Google Scholar
  427. Taylor, L. Y., Cann, D. D. & Welch, B. J. (1990).Antibotulinal properties of nisin in fresh fish packaged in an atmosphere of carbon dioxide. J. Food Prot., 53, 953–957.Google Scholar
  428. Taylor, S. L. & Somers, E. B. (1985).Evaluation of the antibotulinal effectiveness of nisin in bacon. J. Food Prot., 48, 949–952.Google Scholar
  429. Taylor, S. L., Somers, E. B. & Krueger, L. A. (1984).Antibotulinal effectiveness of nisin-nitrite combinations in culture medium and chicken frankfurter emulsions. J. Food Prot., 48, 234–239.Google Scholar
  430. Thompson, J., Nguyen, N. Y., Sackett, D. L. & Donkersloot, J. A. (1991).Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N 5-(L-1-carboxyethyl)-L-ornithine synthase in strain K1. J. Biol. Chem., 266, 14573–14579.Google Scholar
  431. Thorpe, R. H. (1960).The action of nisin on spoilage bacteria. I. The effect of nisin on the heat resistance of Bacillus stearothermophilus spores. J. Appl. Bacteriol., 23, 136–143.CrossRefGoogle Scholar
  432. Tiemann, U. & Belitz, H. D. (1969).About nisin: I. Effect of proteases on nisin activity. Z. Lebensm. Unters. Forsch., 141, 260–262.CrossRefGoogle Scholar
  433. Tramer, J. (1964). The inhibitory action of nisin on Bacillus stearothermophilus. In Microbial Inhibitors in Foods, ed. N. Molin. Almqvist and Wiksell, Stockholm, pp. 25–33.Google Scholar
  434. Tramer, J. (1966).Nisin in food preservation. Chem. Ind., 11, 446–450.Google Scholar
  435. Tramer, J. & Fowler, G. G. (1964).Estimation of nisin in foods. J. Sci. Food Agric., 15, 522–528.CrossRefGoogle Scholar
  436. Tsai, H.-J. & Sandine, W. E. (1987).Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl. Environ. Microbiol., 53, 352–357.Google Scholar
  437. Tubb, R. S. & Ogden, K. (1986). Use of nisin to prevent spoilage of alcoholic beverages. Eur. Pat. Appl. EP 186498 A2.Google Scholar
  438. Vandamme, E. J. (1984). Biotechnology of Industrial Antibiotics. Marcel Dekker, New York.Google Scholar
  439. Vandamme, E. J. & De Vuyst, L. (1990). Novel trends in peptide antibiotic fermentations and bioconversions. Proc. 2nd Int. Biotechnol. Conf. (Asian-Pacific), pp. 379-400.Google Scholar
  440. Van de Ven, F. J. M., Van den Hooven, H. W., Konings, R. N. H. & Hilbers, C. W. (1991a).NMR studies of lantibiotics. The structure of nisin in aqueous solution. Eur. J. Biochem., 202, 1181–1188.CrossRefGoogle Scholar
  441. Van de Ven, F. J. M., Van den Hooven, H. W., Konings, R. N. H. & Hilbers, C. W. (1991b). The spatial structure of nisin in aqueous solution. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 35–42.Google Scholar
  442. Vas, K. (1963).Use of nisin in the thermal preservation of tomato products. Fruchtsaft-Industrie ver Confructa, 8, 73–77.Google Scholar
  443. Vas, K. (1964).Nisin in the food industry. Dt. Lebensmut. Rundsch., 60, 63–67.Google Scholar
  444. Vas, K., Kiss, I. & Kiss, N. (1967).Über die anwendung von nisin zur Verkürzung der Wärmebehandlung bei der sterilisierung von grünerbsen. Zeits. Lebensm. Untersuch. Forsch., 133, 141–144.CrossRefGoogle Scholar
  445. Von Wright, A., Wessels, S., Tynkkynen, S. & Saarela, M. (1990).Isolation of a replication region of a large lactococcal plasmid and use in cloning of a nisin resistance determinant. Appl. Environ. Microbiol., 56, 2029–2035.Google Scholar
  446. Waites, M. J. & Ogden, K. (1987).The estimation of nisin using ATP-bioluminometry. J. Inst. Brew., 93, 30–32.Google Scholar
  447. Wajid, H. R. A. & Kalra, M. S. (1976).Nisin as an aid for extending shelf life of sterilized milk. J. Food Sci. Technol. (Mysore), 13, 6–8.Google Scholar
  448. Wakamiya, T., Fukase, K., Shimbo, K. & Shiba, T. (1983). Bull. Chem. Soc. Jpn, 56, 1559–1560.CrossRefGoogle Scholar
  449. Wakamiya, T., Ueki, Y., Shiba, T., Kido, Y. & Motoki, Y. (1985).The structure of ancovenin, a new peptide inhibitor of angiotensin I converting enzyme. Tetr. Lett., 26, 665–668.CrossRefGoogle Scholar
  450. Wakamiya, T., Fukase, K., Naruse, N., Konishi, M. & Shiba, T. (1988).Lanthiopeptin, a new peptide effective against herpes simplex virus: structural determination and comparison with Ro09-0198, an immunopotentiating peptide. Tetr. Lett., 29, 4771–4772.CrossRefGoogle Scholar
  451. Wakamiya, T., Fukase, K., Sano, A., Shimbo, K., Kitazawa, M., Horimoto, S., Fujita, H., Kubo, A., Maeshiro, Y. & Shiba, T. (1991). Studies on chemical synthesis of the lanthionine peptide nisin. In Nisin and Novel Lantibiotics, ed. G. Jung & H.-G. Sahl. ESCOM Science Publishers B.V., Leiden, pp. 189–203.Google Scholar
  452. Weil, H.-P., Beck-Sickinger, A. G., Metzger, J., Stevanovic, S., Jung, G., Josten, M. & Sahl, H.-G. (1990).Biosynthesis of the lantibiotic Pep5. Isolation and characterization of a prepeptide containing dehydroamino acids. Eur. J. Biochem., 194, 217–223.CrossRefGoogle Scholar
  453. White, R. J. & Hurst, A. (1968a).The location of nisin in the producer organism, Streptococcus lactis. J. Gen. Microbiol., 53, 171–179.CrossRefGoogle Scholar
  454. White, R. J. & Hurst, A. (1968b). Location of nisin in cells of the producer organism, Streptococcus lactis. Proc. Biochem. Soc., 45P.Google Scholar
  455. Whitehead, H. R. (1933).A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochem. J., 27, 1793–1800.Google Scholar
  456. Whitehead, H. R. & Riddet, W. (1933).Slow development of acidity in cheese manufacture. N.Z.J. Agric., 46, 225–229.Google Scholar
  457. WHO Expert Committee on Biological Standardization (1969). Twenty-second report, WHO Technical Report Series No. 444.Google Scholar
  458. Wilimowska-Pelc, A., Olichwier, Z., Malicka-Blaszkiewicz, M. & Mejbaum-Katzenellenbogen, W. (1976).The use of gel-filtration for the isolation of pure nisin from commercial products. Acta Microbiol. Pol., 25, 71–77.Google Scholar
  459. Winkler, S. & Fröhlih, M. (1958).Investigations of emmental cheese with nisin. Milchwiss. Ber., 8, 87–96.Google Scholar
  460. Yousef, A. E., El-Gendy, S. M. & Marth, E. H. (1980).Growth and biosynthesis of aflatoxin by Aspergillus parasiticus in cultures containing nisin. Z. Lebensm. Unters. Forsch., 171, 341–343.CrossRefGoogle Scholar
  461. Zaki, M. S., El Mansy, H. A. H., Hassan, Y. M. & Rahma, E. H. A. (1976). Effect of nisin in saturated brine and storage on the quality of dried bolti fish (Tilapia nilotica). Nahr., 20, 691–697.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Luc De Vuyst
    • 1
  • Erick J. Vandamme
    • 1
  1. 1.Laboratory of Industrial Microbiology and Biocatalysis, Faculty of Agricultural and Applied Biological SciencesUniversity of GentGentBelgium

Personalised recommendations