Advertisement

Enterocin 1146, A Bacteriocin Produced by Enterococcus Faecium DPC1146

  • Colin Hill

Abstract

It has long been known that the enterococci are capable of producing bacteriocins, some of which display a broad inhibitory spectrum (Brock et al., 1963). Recent reports also suggest that the ability of enterococci to inhibit Listeria monocytogenes may be relatively widespread (McKay, 1990; Arihara et al., 1991). However, these are preliminary studies and the bacteriocins involved have not been purified or characterized beyond their inhibitory activity against Listeria. Among the better-characterized enterococcal bacteriocins are enterocin E1A and E1B, produced by Enterococcus faecium E1 (Kramer & Brandis, 1975a). Enterocin E1A is a compound of low molecular mass (about 10 kDa), which is sensitive to proteases and is thermostable. It shows activity against other enterococcal strains and Listeria monocytogenes. The mode of action appears to be rapid, within 2–3 min, and bactericidal (Kramer & Brandis, 1975b). No significant lysis of sensitive strains was observed, but a rapid efflux of accumulated isoleucine was observed. These effects have been ascribed to the collapse of the membrane potential in other bacteriocin-strain interactions (Van Belkum et al., 1991). Enterocin E1B is a compound of large molecular mass (> 1000 kDa) which is thermolabile and trypsin resistant. However, no bacteriophage-like particles could be detected in enterocin E1B preparations.

Keywords

Lactic Acid Bacterium Listeria Monocytogenes Enterococcus Faecium Bacteriocin Production Cheddar Cheese 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Zoreky, N., Ayres, J. W. & Sandine, W. E. (1991).Antimicrobial activity of Microgard™ against food spoilage and pathogenic microorganisms. J. Dairy Sci., 74, 758–763.CrossRefGoogle Scholar
  2. Arihara, K., Ogihara, S., Sakata, J., Itoh, M. & Kondo, Y. (1991).Antimicrobial activity of Enterococcus faecalis against Listeria monocytogenes. Lett. Appl. Microbiol., 13, 190–192.CrossRefGoogle Scholar
  3. Bhunia, A. K., Johnson, M. C. & Ray, B. (1987).Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Indust. Microbiol., 2, 319–322.CrossRefGoogle Scholar
  4. Bhunia, A. K., Johnson, M. C. & Ray, B. (1988).Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl Bacteriol., 65, 261–268.CrossRefGoogle Scholar
  5. Brock, T. D., Peacher, B. & Pierson, D. (1963).Study of the bacteriocins of enterococci. J. Bacteriol., 86, 702–707.Google Scholar
  6. Dahlberg, A. C. & Kosikowski, F. V. (1948).The development of flavor in American Cheddar cheese made from pasteurized milk with Streptococcus faecalis starter. J. Dairy Sci., 31, 275–284.CrossRefGoogle Scholar
  7. Elliker, P. R., Anderson, A. & Hammesson, G. (1956).An agar culture medium for lactic acid streptococci and lactobacilli. J. Dairy Sci., 39, 1611–1612.CrossRefGoogle Scholar
  8. Fredericq, P. (1948). Actions antibiotiques reciproques chez les Enterobacteriaceae. Rev. Belge. Pathol. Med. Exp., 19 (Suppl. 4), 1–107.Google Scholar
  9. Galvez, A., Maqueda, M., Valdivia, E., Quesada, A. & Montoya, E. (1986).Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can. J. Microbiol., 32, 765–771.CrossRefGoogle Scholar
  10. Galvez, A., Valdivia, E., Martinez, M. & Maqueda, M. (1989).Effect of peptide AS-48 on Enterococcus faecalis subsp. liquefaciens S-47. Antimicrob. Agents Chemother., 33, 641–645.CrossRefGoogle Scholar
  11. Geis, A., Singh, J. & Teuber, M. (1983).Potential of lactic streptococci to produce bacteriocin. Appl. Environ. Microbiol., 45, 205–211.Google Scholar
  12. Giulian, G. G., Moss, R. L. & Greaser, M. (1983).Improved methodology for analysis and quantitation of proteins on one dimensional silver stained slab gels. Analyt. Biochem., 129, 277–287.CrossRefGoogle Scholar
  13. Grinstead, D. A. & Barefoot, S. F. (1992).Jenseniin G, a heat stable bacteriocin produced by Propionibacterium jensenii P126. Appl. Environ. Microbiol., 58, 215–220.Google Scholar
  14. Hewitt, W. (1977). Microbiological Assay. Acadmic Press, New York.Google Scholar
  15. Holo, H., Nilssen, O. & Nes, I. F. (1991).Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol., 173, 3879–3887.Google Scholar
  16. Klaenhammer, T. R. (1988).Bacteriocins of lactic acid bacteria. Biochimie, 70, 337–349.CrossRefGoogle Scholar
  17. Kramer, J. & Brandis, H. (1975a).Purification and characterization of two bacteriocins from Streptococcus faecium. J. Gen. Microbiol., 88, 93–100.CrossRefGoogle Scholar
  18. Kramer, J. & Brandis, H. (1915b).Mode of action of two Streptococcus faecium bacteriocins. Antimicrob. Agents Chemother., 7, 117–120.CrossRefGoogle Scholar
  19. Kramer, J., Keness, J. & Brandis, H. (1983).Transfer of a miniplasmid determining bacteriocin production and immunity in Streptococcus faecium. FEMS Microbiol. Lett., 20, 385–389.CrossRefGoogle Scholar
  20. Lyon, W. J. & Glatz, B. A. (1991).Partial purification and characterization of a bacteriocin produced by Propionibacterium thoenii. Appl. Environ. Microbiol., 57, 701–706.Google Scholar
  21. Martinez-Bueno, M., Galvez, A., Valdivia, E. & Maqueda, M. (1990).A transferable plasmid associated with AS-48 production in Enterococcus faecalis. J. Bacteriol., 172, 2817–2818.Google Scholar
  22. Mayr-Harting, A., Hedges, A. J. & Berkeley, R. C. W. (1972). Methods for studying bacteriocins. In Methods in Microbiology, Vol. 7A, ed. J. R. Norris & D. W. Ribbons, pp. 315–422, Academic Press, New York.Google Scholar
  23. McKay, A. M. (1990).Antimicrobial activity of Enterococcus faecium against Listeria spp. Lett. Appl. Microbiol., 11, 15–17.CrossRefGoogle Scholar
  24. Parente, E. & Hill, C. (1992a).Characterization of enterocin 1146, a bacteriocin from Enterococcus faecium inhibitory to Listeria monocytogenes. J. Food Prot., 55, 497–502.Google Scholar
  25. Parente, E. & Hill, C. (1992b).Inhibition of Listeria in buffer, broth and milk by enterocin 1146, a bacteriocin produced by Enterococcus faecium. J. Food Prot., 55, 503–508.Google Scholar
  26. Parente, E. & Hill, C. (1992c).A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J. Appl. Bacteriol., 73, 290–298.CrossRefGoogle Scholar
  27. Parente, E., Villani, F., Coppola, R. & Coppola, S. (1989).A multiple strain starter for water-buffalo mozzarella cheese manufacture. Lait, 69, 271–279.CrossRefGoogle Scholar
  28. Pollman, D. S., Danielson, D. M. & Peo, E. R. (1980).Effects of microbial feed additives on performance of starter and growing pigs. J. Animal Sci., 51, 577–581.Google Scholar
  29. Tagg, J. R., Dajani, A. S. & Wannamaker, L. W. (1976).Bacteriocins of gram-positive bacteria. Bacteriol. Rev., 40, 722–756.Google Scholar
  30. Upreti, G. C. & Hinsdill, R. D. (1975).Production and mode of action of lactocin 27: a bacteriocin from homofermentative Lactobacillus. Antimicrob. Agents Chemother., 7, 145–149.CrossRefGoogle Scholar
  31. Van Belkum, M. J., Kok, J., Venema, G., Holo, H., Nes, I. F., Konings, W. N. & Abee, T. (1991).The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol., 173, 7934–7941.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Colin Hill
    • 1
  1. 1.Department of Food MicrobiologyUniversity College CorkIreland

Personalised recommendations