Lactocin 27, A Bacteriocin Produced by Homofermentative Lactobacillus Helveticus Strain LP27

  • Girish C. Upreti

Abstract

Early attempts to demonstrate bacteriocinogeny in lactobacilli were confounded by the antimicrobial actions of metabolic by-products such as hydrogen peroxide and lactic acid (Wheater et al., 1952; Tramer, 1966; Dahiya & Speck, 1967). In a few instances, however, antibiotic substances were responsible for the inhibitory activity (Kodama, 1952; Vincent et al., 1959; Vakil & Shahani, 1965). These substances were not classified as bacteriocins because most were of low molecular mass and had a wide spectrum of antibacterial activity against both Gram-positive and Gram-negative organisms.

Keywords

Fermentation Agar Carbohydrate Steam Chloroform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Zoreky, N., Sandine, W. E. & Zoreky, N. Al. (1988). Studies on cottage cheese shelf life extender. J. Dairy Sci., 71 (Suppl. 1), 116.Google Scholar
  2. Attaie, R., Whalen, P. J., Shahani, K. M. & Amer, M. A. (1987).Inhibition of growth of Staphylococcus aureus during production of acidophilus yogurt. J. Food Protection, 50, 224–228.Google Scholar
  3. Barefoot, S. F. & Klaenhammer, T. R. (1984).Purification and characterization of the Lactobacillus acidophilus bacteriocin lactocin B. Antimicrob. Agents Chemother., 26, 328–334.CrossRefGoogle Scholar
  4. Bartz, S. R. (1969). Investigation on the purification and properties of lactobacillin, a bacteriocin produced by a Lactobacillus species. MS thesis, University of Wisconsin, Madison, USA.Google Scholar
  5. Bottazzi, V. (1984). Extrachromosomal genetic systems in lactic acid bacteria. Latte 6, 505–508. In Dairy Science Abstracts, 47(1985) 1478.Google Scholar
  6. Chen, P. S. Jr., Toribara, T. Y. & Warner, H. (1956).Microdetermination of phosphorus. Anal. Chem., 28, 1756–1758.CrossRefGoogle Scholar
  7. Crestfield, A. M., Moore, S. & Stein, W. H. (1963).The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J. Biol. Chem., 238, 622–627.Google Scholar
  8. Daeschel, M. A., McKenney, M. C. & McDonald, L. C. (1990).Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol., 7, 91–98.CrossRefGoogle Scholar
  9. Dahiya, R. S. & Speck, M. L. (1967).Hydrogen peroxide formation by Lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci., 51, 1568–1572.CrossRefGoogle Scholar
  10. Dajani, A. S., Gray, E. D. & Wannamaker, L. W. (1970).Bactericidal substance from Staphyloccus aureus; Biological properties. J. Exp. Med., 131, 1004–1015.CrossRefGoogle Scholar
  11. De Graaf, F. K. (1973).Effects of cloacin DF13 on the functioning of the cytoplasmic membrane. Antonie van Leeuwenhoek J. Microbiol. Serol., 39, 109–179.CrossRefGoogle Scholar
  12. Deibel, R. H. & Evans, J. B. (1960).Modified benzidine test for the detection of cytochrome containing respiratory systems in microorganisms. J. Bacteriol., 79, 356–360.Google Scholar
  13. De Klerk, H. C. (1967).Bacteriocinogeny in Lactobacillus fermenti. Nature, 214, 609.CrossRefGoogle Scholar
  14. De Klerk, H. C. & Coetzee, J. N. (1961).Antibiosis among Lactobacilli. Nature, 192, 340–341.CrossRefGoogle Scholar
  15. De Klerk, H. C. & Smit, J. A. (1967).Properties of a Lactobacillus fermenti bacteriocin. J. Gen. Microbiol., 48, 309–316.CrossRefGoogle Scholar
  16. Filippov, V. A. (1976).Sensitivity of Lactobacillus casei and L. plantarum to bacteriocins of different lactobacilli species., Antibiotiki, 21, 729–732.Google Scholar
  17. Gagliano, V. J. & Hinsdill, R. D. (1970).Characterization of a Staphylococcus aureus bacteriocin. J. Bacteriol., 104, 117–125.Google Scholar
  18. Gilliland, S. E. & Walker, D. K. (1990).Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci., 73, 905–911.CrossRefGoogle Scholar
  19. Gonzalez, C. F. (1989). Method for inhibiting bacterial spoilage and resulting compositions. United States Patent, 4-883-673. In Dairy Science Abstracts, 52 (1990) 4377.Google Scholar
  20. Hale, E. M. & Hinsdill, R. D. (1973).Characterization of a bacteriocin from Staphylococcus aureus strain 462. Antimicrob. Agents Chemother., 4, 634–640.CrossRefGoogle Scholar
  21. Harris, L. J., Daeschel, M. A., Stiles, M. E. & Klaenhammer, T. R. (1989).Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Protection, 52, 384–387.Google Scholar
  22. Hirs, C. H. W. (1967). Performic acid oxidation. In Methods in Enzymology, ed. C. H. W. Hirs. Academic Press, New York, Vol. 11, pp. 197–199.Google Scholar
  23. Hodge, J. E. & Hofreiter, B. T. (1962). Determination of reducing sugars and carbohydrates, by a phenol-sulfuric acid colorimetric method. In Methods in Carbohydrate Chemistry, ed. R. L. Whistler & M. L. Wolfrom. Academic Press, New York, Vol. 1, pp. 388–389.Google Scholar
  24. Joerger, M. C. & Klaenhammer, T. R. (1986).Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol., 167, 439–446.Google Scholar
  25. Johnson, L. L. (1970). Purification and characterization of bacteriocins of the lactobacilli. MS thesis, University of Wisconsin, Madison, USA.Google Scholar
  26. Klaenhammer, T. R. (1988).Bacteriocins of lactic acid bacteria. Biochimie, 70, 337–349.CrossRefGoogle Scholar
  27. Kodama, R. (1952).Studies on lactic acid bacteria II. Lactolin, a new antibiotic substance produced by lactic acid bacteria. J. Antibiotics, 5, 72–74.Google Scholar
  28. Kurmann, J. A. (1990).A new generation of fermented milk products with selected intestinal bacteria for more beneficial physiological effects. Dairy Sci. Abstracts, 52, 6029.Google Scholar
  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951).Protein measurement with the Folin-phenol reagent. J. Biol. Chem., 193, 265–275.Google Scholar
  30. McCormick, E. L. & Savage, D. C. (1983).Characterization of Lactobacillus species strain 100-37 from the murine gastrointestinal tract: ecology, plasmid content and antagonistic activity toward Clostridium ramosum H1. Appl. Environ. Microbiol., 46, 1103–1112.Google Scholar
  31. Mortvedt, C. I. & Nes, I. F. (1990).Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol., 136, 1601–1607.CrossRefGoogle Scholar
  32. Muriana, P. M. & Klaenhammer, T. R. (1989). Bacteriocins from lactic acid bacteria: genetics and potential for strain development. J. Dairy Sci., 72(Suppl. 1), 123.CrossRefGoogle Scholar
  33. Muriana, P. M. & Klaenhammer, T. R. (1990). Cloning and expression of the gene for lactacin F, a Lactobacillus acidophilus bacteriocin, using an amino acid sequence-derived DNA probe. J. Dairy Sci., 73(Suppl. 1), 73.CrossRefGoogle Scholar
  34. Piard, J. C., Cuminal, C. & Desmazeaud, M. J. (1989). Partial characterization of lacticin 481, a plasmid-borne bacteriocin produced by L. lactis CNRZ 481. J. Dairy Sci., 72(Suppl. 1), 114.Google Scholar
  35. Rammelsberg, M, Muller, E. & Radler, F. (1990).Caseicin 80: purification and characterization of a new bacteriocin from Lactobacillus casei. Arch. Microbiol., 154, 249–252.CrossRefGoogle Scholar
  36. Ray, B. (1989). Antimicrobials of starter culture bacteria and their use in food preservation. J. Dairy Sci., 72(Suppl. 1), 122–123.Google Scholar
  37. Rude, E. & Goebel, W. F. (1962).Colicin K. V. The somatic antigens on a non-colicinogenic variant of E. coli K235. J. Exp. Med., 116, 73–100.CrossRefGoogle Scholar
  38. Schillinger, U. & Lucke, F. K. (1989).Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 55, 1901–1906.Google Scholar
  39. Spande, T. F. & Witkop, B. (1967). Determination of tryptophan content of proteins with N-bromosuccinimide. In Methods in Enzymology, ed. C. H. W. Hirs. Academic Press, New York, Vol. 11, pp. 498–506.Google Scholar
  40. Toba, T., Yoshioka, E. & Itoh, T. (1991).Acidophilucin A, a new heat-labile bacteriocin produced by Lactobacillus acidophilus LAPT 1060. Letters Appl. Microbiol., 12, 106–108.CrossRefGoogle Scholar
  41. Tramer, J. (1966).Inhibitory effect of Lactobacillus acidophilus. Nature, 211, 204–205.CrossRefGoogle Scholar
  42. Upreti, G. C. (1974). Characterization of lactocin 27: A bacteriocin from Lactobacillus helveticus. PhD thesis, University of Wisconsin, Madison, USA.Google Scholar
  43. Upreti, G. C. & Hinsdill, R. D. (1973).Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob. Agents Chemother., 4, 487–494.CrossRefGoogle Scholar
  44. Upreti, G. C. & Hinsdill, R. D. (1975).Production and mode of action of lactocin 27: bacteriocin from a homofermentative Lactobacillus. Antimicrob. Agents Chemother., 7, 139–145.CrossRefGoogle Scholar
  45. Vakil, J. R. & Shahani, K. M. (1965). Partial purification of antibacterial activity of Lactobacillus acidophilus. Bacteriol. Proc., 9.Google Scholar
  46. Vincent, F., Veomett, R. C. & Riley, R. F. (1959).Antibacterial activity of Lactobacillus acidophilus. J. Bacteriol., 78, 477–485.Google Scholar
  47. Waehneldt, T. V. (1970).Preparative isolation of membrane proteins by Polyacrylamide gel electrophoresis in the presence of ionic detergent (SDS). Anal. Biochem., 43, 306–312.CrossRefGoogle Scholar
  48. West, C. A. & Warner, P. J. (1988).Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193. FEMS Microbiol. Letters, 49, 163–165.Google Scholar
  49. Wheater, D. M., Hirsch, A. & Mattick, A. T. R. (1952).Possible identity of ‘lactobacillin’ with hydrogen peroxide produced by Lactobacilli. Nature, 170, 623–624.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Girish C. Upreti
    • 1
  1. 1.New Zealand Pastoral Agriculture Research InstituteRuakura Agricultural CentreHamiltonNew Zealand

Personalised recommendations