Detection and identification of foodborne microbial pathogens by the polymerase chain reaction: food safety applications

  • W. E. Hill
  • Ø. Olsvik


Traditional microbiological techniques for the isolation and identification of bacteria from foods have depended on obtaining pure cultures. Enrichment and selection steps are often time-consuming and the biochemical identification of a particular species may add several days to the procedure. Such methods are insufficient when an outbreak of foodborne disease is occurring or food products with short shelf-lives must be tested. DNA hybridisation methods first developed for research use in the molecular biology laboratory, such as DNA gene probes used for colony hybridisation (Grünstein and Hogness, 1975), and the polymerase chain reaction (PCR, Saiki et al., 1985) have shortened the time required for analysis, by obviating the need for pure cultures. Very rapid PCR methods have been developed that allow the analysis of some food samples within? 3–4 h. The basic mechanism of the PCR and its variations will be discussed. Examples of how PCR has been applied to the detection of particular foodborne pathogens will be presented.


Polymerase Chain Reaction Listeria Monocytogenes Foodborne Pathogen Yersinia Enterocolitica Clostridium Botulinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, D.L. and Kvenberg, J.E. (1985) Incidence and cost of foodborne diarrhoeal disease in the United States. J. Food Prot., 48, 887–894.Google Scholar
  2. Archer, D.L. and Young, F.E. (1988) Contemporary issues: diseases with a food vector. Clin. Microbiol. Rev., 1, 377–398.Google Scholar
  3. Arnheim, N. and Levenson, CH. (1990) Polymerase chain reaction. Chem. Engng News, 1 oct. 36–47.Google Scholar
  4. Atmar, R.L., Metealf, T.G., Neill, F.H. and Estes, M.K. (1993) Detection of enteric viruses in oysters by using the polymerase chain reaction. Appl. Environ. Microbiol., 59, 631–635.Google Scholar
  5. Baker, R.B., Jr. (1990) DNA probe diagnosis of parasitic infections. Exp. Parasitol., 70, 494–499.CrossRefGoogle Scholar
  6. Bean, N.H., Griffin, P.M., Golding, J.S. and Ivey, C.B. (1990) Foodborne disease outbreaks, 5-year summary, 1983–1987. Morb. Mortal. Weekly Rep., 39, 15–57.Google Scholar
  7. Bej, A.K., Steffan, R.J., DiCesare, J., et al. (1990) Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl. Environ. Microbiol., 56, 307–314.Google Scholar
  8. Bej, A.K., McCarty, S.C. and Atlas, R.M. (1991) Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring. Appl. Environ. Microbiol., 57, 2429–2432.Google Scholar
  9. Beutler, E., Gelbart, T. and Kuhl, W. (1990) Interference of heparin with the polymerase chain reaction. BioTeehniques, 9, 166.Google Scholar
  10. Border, P.M., Howard, J.J., Plastow, G.S. and Siggens, K.W. (1990) Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction. Lett. Appl. Microbiol., 11, 158–162.CrossRefGoogle Scholar
  11. Brian, M.J., Frosolono, M., Murray, B.E. et al., (1992) Polymerase chain reaction for diagnosis of enterohaemorrhagic Escherichia coli infection and hemolytic-uremic syndrome. J. clin. Microbiol., 30, 1801–1806.Google Scholar
  12. Bubert, A., Kohler, A. and Goebel, W. (1992) The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl. Environ. Microbiol., 581, 2625–2632.Google Scholar
  13. Buffone, G.J., Demmler, G.J., Shimbor, CM. and Greer, J. (1991) Improved amplification of cytomegalovirus DNA from urine after purification of DNA with glass beads. Clin. Chem., 37, 1945–1949.Google Scholar
  14. Candrian, U., Furrer, B., Höfelein, C. et al. (1991) Detection of Escherichia coli and identification of enterotoxigenic strains by primer-directed enzymatic amplification of specific DNA sequences. Int. J. Food Microbiol., 12, 339–351.CrossRefGoogle Scholar
  15. Candrian, U., Hofelein, C. and Luthy, J. (1992) Polymerase chain reaction with additional primers allows identification of amplified DNA and recognition of specific alleles. Molec. Cell. Probes, 6, 13–19.CrossRefGoogle Scholar
  16. Centers for Disease control (1992) Summary of notifiable diseases, United States, 1991. Morb. Mortal. Weekly Rep., 40, 3.Google Scholar
  17. Cossart, P., Vincente, M.F., Mengaud, J., et al. (1989) Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immunol., 57, 3629–3936.Google Scholar
  18. Cudjoe, K.S., Patel, P.D., Olsen, E., et al. (1993) Application of immunomagnetic separation techniques to detect pathogenic bacteria in foods, in Application of New Techniques in Food and Beverage Microbiology (eds Kroll, R.G., Gilmour, A. and Sussman, M.). Academic Press, London, pp. 17–31.Google Scholar
  19. De Francis, R., Cross, N.C.P., Foulkes, N.S. and Cox. T.M. (1988) A potent inhibitor of Taq polymerase co-purifies with human genomic DNA. Nucleic Acids Res., 16, 10355.CrossRefGoogle Scholar
  20. De Leon, R., Matsui, S.M., Baric, R.S., et al. (1992) Detection of Norwalk virus in stool specimens by reverse transcriptase-polymerase chain reaction and nonradioactive oligoprobes. J. Clin. Microbiol., 30, 3151–3157.Google Scholar
  21. Deneer, H.G. and Boychuk, I. (1991) Species–specific detection of Listeria monocytogenes by DNA amplification. Appl. Environ. Microbiol., 57, 606–609.Google Scholar
  22. Desenclos, J.-C.A., Klontz, K.C., Wilder, M.H., et al. (1991) A multistate outbreak of hepatitis A caused by the consumption of raw oysters. Am. J. Public Health, 81, 1268–1272.CrossRefGoogle Scholar
  23. Dorsch, M., Lane, D. and Stackebrandt, E. (1992) Towards a phytogeny of the genus Vibrio based on 16S rRNA sequences. Int. J. Syst. Bacteriol., 42, 58–63.CrossRefGoogle Scholar
  24. Doyle, M.P. (1991) E. coli O157:H7 and its significance in foods. Int. J. Food Microbiol, 12, 289–301.CrossRefGoogle Scholar
  25. Erlich, H.A., Gelfand, D. and Sninsky, J.J. (1991) Recent advances in the polymerase chain reaction. Science, 252, 1643–1651.CrossRefGoogle Scholar
  26. Farber, J. and Peterkin, P. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev., 55, 476–511.Google Scholar
  27. Feng, P., Keasler, S. and Hill, W.E. (1992) Direct identification of Yersinia enterocolitica in blood by using polymerase chain reaction amplification. Transfusion 32, 850–854.CrossRefGoogle Scholar
  28. Ferreira, J.L., Hamdy, M.K., McCay, S.G. and Baumstark, B.R. (1992) An improved assay for identification of type A Clostridium botulinum using the polymerase chain reaction. J. Rapid Methods Automat. Microbiol., 1, 29–39.CrossRefGoogle Scholar
  29. Fields, P.I., Popovic, T., Wachsmuth, K. and Olsvik, O (1992) Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. J. Clin. Microbiol., 30, 2118–2121.Google Scholar
  30. Fitter, S., Heuzenroeder, M. and Thomas, C.J. (1991) A combined PCR and selective enrichment method for rapid detection of Listeria monocytogenes. J. Appl. Bacteriol., 73, 53–59.Google Scholar
  31. Furrer, B., Candrian, U. and Lüthy, J. (1990) Detection and identification of E. coli producing heat-labile enterotoxin type 1 by enzymatic amplification of a specific DNA fragment. Lett. Appl. Microbiol., 10, 31–34.CrossRefGoogle Scholar
  32. Furrer, B., Candrian, U., Höfelein, C. and Lüthy, J. (1991) Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J. Appl. Bacteriol., 70, 372–379.CrossRefGoogle Scholar
  33. Frankel, G., Giron, J.A. Valmasoi, J. and Schoolnik, G.K. (1989) Multi-gene amplification: simultaneous detection of three virulence genes in diarrhoeal stool. Molec. Microbiol., 3, 1729–1734.CrossRefGoogle Scholar
  34. Fratamico, P.M., Schultz, F.J. and Buchanan., R.L. (1992) Rapid isolation of Escherichia coli O157:H7 from enrichment cultures of foods using an immunomagnetic separation method. Food Microbiol., 9, 105–113.CrossRefGoogle Scholar
  35. Gannon, V.P.J., King, R.K., Kim, J.Y. and Golsteyn Thomas, E.J. (1992) Rapid and sensitive method for detection of Shiga-like toxin-producing Escherichia coli in ground beef using the polymerase chain reaction. Appl. Environ. Microbiol., 58, 3809–3815.Google Scholar
  36. Giesendorf, B.A.J., Quint, W.G.V., Henkens, M.H.C., et al. (1992) Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl. Environ. Microbiol., 58, 3804–3808.Google Scholar
  37. Golsteyn Thomas, E.J., King, R.K., Burchak, J. and Gannon, V.P.J. (1991) Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl. Environ. Microbiol., 57, 2576–2580.Google Scholar
  38. Gouvea, V., Glass, R.I., Woods, P., et al. (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J. Clin. Microbiol., 28, 276–282.Google Scholar
  39. Grünstein, M. and Hogness, D.S. (1975) Colony hybridisation: method for the isolation of cloned DNAs that contain a specific gene. Proc. Nat. Acad. Sci. USA, 72, 3961–3965.CrossRefGoogle Scholar
  40. Gurtler, V., Wilson, V.A. and Mayall, B.C. (1991) Classification of medically important Clostridia using restriction endonuclease site differences of PCR-amplified 16S rRNA. J. Gen. Microbiol., 137, 2673–2679.CrossRefGoogle Scholar
  41. herman, L. and De Ridder, H. (1992) DNA hybridization and amplification techniques to accelerate the identification of Listeria monocytogenes. Milchwissenschaft, 47, 354–357.Google Scholar
  42. Hill, W.E. and Carlisle, C.L. (1981) Loss of plasmids during enrichment for Escherichia coli Appl. Environ. Microbiol., 41, 1046–1048.Google Scholar
  43. Hill, W.E., Keasler, S.P., Trucksess, M.W., et al. (1991) Polymerase chain reaction identification of Vibrio vulnificus in artificially contaminated oysters. Appl. Environ. Microbiol., 57, 707–711.Google Scholar
  44. Hill, W.E., Jinneman, K.C., Trost, P.A., et al. (1993) Multiplex polymerase chain reaction detection of Shiga-like toxin genes in Escherichia coli. FDA Lab. Inf. Bull., Submitted.Google Scholar
  45. Hood, A.M., Pearson, A.D. and Shahamat, M. (1988) The extent of surface contamination of retailed chickens with Campylobacter jejuni serogroups. Epidemiol. Infect., 100, 17–25.CrossRefGoogle Scholar
  46. Hornes, E., Wasteson, Y. and Olsvik, O. (1991) Detection of Escherichia coli heat-stable enterotoxin genes in pig stool specimens by an immobilized, colorimetric nested polymerase chain reaction. J. Clin. Microbiol., 29, 2375–2379.Google Scholar
  47. Ibrahim, A., Liesack, W., Pike, S. and Stakebrandt, E. (1992) the polymerase chain reaction: an epidemiological tool to differentiate between two clusters of yersinia enterocolitica strains. FEMS Microbiol. Lett., 97, 63–66.CrossRefGoogle Scholar
  48. Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (1990) PCR Protocols, A Guide to Methods and Applications. Academic Press, New York.Google Scholar
  49. Islam, D. and Lindberg, A.A. (1992) Detection of Shigella dysenteriae type 1 and Shigella flexneri in feces by immunomagnetic isolation and polymerase chain reaction. J. Clin. Microbiol., 30, 2801–2806.Google Scholar
  50. Islam, D., Tzipori, S., Islam, M. and Lindberg, A.A. (1993) Rapid isolation of Shigella dysenteriae and Shigella flexneri in faeces by O-antigen specific monoclonal antibody coated immunomagnetic beads. Eur. J. Clin. Microbiol. Infect. Diseases, 12, 25–32.CrossRefGoogle Scholar
  51. Jackson, M.P. (1991) Detection of Shiga toxin-producing Shigella dysenteriae type 1 and Escherichia coli by using polymerase chain reaction with incorporation of digoxigenin-11-dUTP. J. Clin. Microbiol., 29, 1910–1914.Google Scholar
  52. Jansen, R.W., Siegl, G. and Lemon, S.M. (1990) Molecular epidemiology of human hepatitis A virus defined by an antigen-capture polymerase chain reaction method. Proc. Nat. Acad. Sci. USA, 87, 2867–2871.CrossRefGoogle Scholar
  53. Jaton, K., Sahli, R. and Bille, J. (1992) Development of polymerase chain reaction assays for detection of Listeria monocytogenes in clinical cerebrospinal fluid samples. J. Clin. Microbiol., 30, 1931–1936.Google Scholar
  54. Jiang, X., Estes, M.K. and Metcalf, T.G. (1987) Detection of hepatitis A virus by hybridization with single-stranded RNA probes. Appl. Environ. Microbiol., 53, 2487–2495.Google Scholar
  55. Johnson, W.M., Tyler, S.D., Ewan, E.P., et al. (1991) Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol., 29, 426–430.Google Scholar
  56. Kaplan, J.E., Feldman, R., Campbell, D.S., et al. (1982) The frequency of a Norwalk-like pattern of illness in outbreaks of acute gastroenteritis. Am. J. Public Health, 72, 1329–1332.CrossRefGoogle Scholar
  57. Kapperud, G., Vardun, T., Skjerve, E., et al. (1994) Detection of pathogenic Yersinia enterocolitica in food and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA. Appl. Environ. Microbiol. (submitted).Google Scholar
  58. Karch, H., and Meyer, T. (1989) Single primer pair for amplifying segments of distinct Shiga-like toxin genes by polymerase chain reaction. J. Clin. Microbiol., 27, 2751–2757.Google Scholar
  59. Keasler, S.P. and Hill, W.E. (1992) Polymerase chain reaction identification of enteroinvasive Escherichia coli seeded into raw milk. J. Food Prot., 55, 382–384.Google Scholar
  60. Koch, W.H., Paynes, W.L., Wentz, B.A. and Cebula, T.A. (1993) Rapid polymerase chain reaction method for detection of Vibrio cholerae in foods. Appl. Environ. Microbiol., 59, 556–560.Google Scholar
  61. Kwaga, J., Wersen, J.O. and Misra, V. (1992) Detection of pathogenic Yersinia enterocolitica by polymerase chain reaction and digoxigenin-labelled polynucleotide probes. J. Clin. Microbiol., 30, 2668–2673.Google Scholar
  62. Lampel, K.A., Jagow, J.A., Trucksess, M. and Hill, W.E. (1990) Polymerase chain reaction for detection of invasive Shigella flexneri in food. Appl. Environ. Microbiol., 56, 1536–1540.Google Scholar
  63. Linnan, J.J., Mascola, L., Lou, X.D., et al. (1988) Epidemic listeriosis associated with Mexican-style cheese. New Eng. J. Med., 319, 823–828.CrossRefGoogle Scholar
  64. Luk, J.M.C. and Lindberg, A.A. (1991) Rapid and sensitive detection of Salmonella (O:6,7) by immunomagnetic monoclonal antibody-based assays. J. Immunol. Meth., 137, 1–8.CrossRefGoogle Scholar
  65. Lund, A., Hellemann, A.L. and vartdal, F. (1988) Rapid isolation of K88+ Escherichia coli by using immunomagnetic particles. j. Clin. Microbiol., 26, 2572–2575.Google Scholar
  66. Lund, A., Wasteson, Y. and Olsvik, O. (1991) Immunomagnetic separation and DNA hybridization for detection of enterotoxigenic Escherichia coli in a piglet model. J. Clin. Microbiol., 29, 2259–2262.Google Scholar
  67. Lundeberg, J., Wahlberg, J.M., Holmberg et al. (1990) Rapid colorimetric detection of in vitro amplified DNA sequences. DNA Cell. Biol., 9, 287–292.CrossRefGoogle Scholar
  68. Mahbubani, M.H., Bej, A.K., Perlin, M.H. et al. (1991) Detection of Giardia cysts by using the polymerase chain reaction and distinguishing live from dead cysts. Appl. Environ. Microbiol., 57, 3456–3461.Google Scholar
  69. Mahbubani, M.H., Bej, A.K., Perlin, M.H. et al. (1992) Differentiation of Giardia duodenalis from other Giardia spp. by using polymerase chain reaction and gene probes. J. Clin. Microbiol., 30, 74–78.Google Scholar
  70. Mengaud, J., Vincente, M.F., Chenevert, J., et al. (1988) expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect. Immunol., 56, 766–772.Google Scholar
  71. Meyer, R., Luthy, J. and Candrian, U. (1991) Direct detection by polymerase chain reaction (PCR) of Escherichia coli in water and soft cheese and identification of enterotoxigenic strains. Lett. Appl. Microbiol., 13, 268–271.CrossRefGoogle Scholar
  72. Miller, V.L., Farmer, J.J., III, Hill, W.E. and Falkow, S. (1989) The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect. Immun., 57: 121–131.Google Scholar
  73. Miyamoto, Y., Kato, T., Obara, Y., et al. (1969) In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J. Bacteriol., 100, 1147–1149.Google Scholar
  74. Muir, P., Nicholson, F., Jhetam, M., et al. (1993) Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. J. Clin. Microbiol., 31, 31–38.Google Scholar
  75. Mullis, K.B. (1989) The polymerase chain reaction: why it works, in Polymerase Chain Reaction (eds. Erlich, H.A., Gibbs, R. and Kazazian, H.H., Jr.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp.237–243.Google Scholar
  76. Nishibuchi, M. and Kaper, J.B. (1990) Duplication and variation of the thermostable direct haemolysin (tdh) gene in Vibrio parahaemolyticus. Molec. Microbiol., 4, 87–99.CrossRefGoogle Scholar
  77. Nustad, K., Paus, E. and Börner, O.P. (1991) Magnetic particles as solid phase in immunoassays, in Magnetic Separation Techniques Applied to Cellular and Molecular Biology, (ed. Kemshead, J.T.). Wordsmiths Conference Publications, Somerset, pp. 39–46.Google Scholar
  78. Okrend, A.J.G., Rose, B.E. and Lattuada, CP. (1992) Isolation of Escherichia coli O157:H7 using O157 specific antibody coated magnetic beads. J. Food Prot., 55, 214–217.Google Scholar
  79. Olive, D.M. (1989) Detection of enteropathogenic Escherichia coli after polymerase chain reaction amplification with a thermostable DNA polymerase. J. Clin. Microbiol., 27, 261–265.Google Scholar
  80. Olive, D.M., Atta, A.I. and Sethi, S.K. (1988) Detection of toxigenic Escherichia coli using biotinlabelled DNA probes following enzymatic amplification of heat labile toxin gene. Molec. Cell. Probes., 2, 47–57.CrossRefGoogle Scholar
  81. Oliver, J.D., Nilsson, L. and Kjellberg, S. (1991) formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol., 57, 2640–2644.Google Scholar
  82. Olsvik, Ø., Hornes, E., Wasteson, Y. and Lund, A. (1991) detection of virulence determinants in enteric Escherichia coli using nucleic acid probes and polymerase chain reaction, in Molecular Pathogenesis of Gastrointestinal Infections (eds. Wadström, T., Mäkelä, P.H., Svennerholm, A.-M and Wolf-Watz, H.). Plenum Press, New York, pp. 267–272.CrossRefGoogle Scholar
  83. Olsvik, Ø., Popovic, T. and Fields, P.I. (1993) Polymerase chain reaction for detection of toxin genes in strains of Vibrio cholerae, in Diagnostic Molecular Microbiology: Principles and Applications (eds. Persing, D.H., Tenover, F.C., Smith, T.F. and White, T.J.) American Society for Microbiology, Washington, DC, pp. 266–270.Google Scholar
  84. Olsvik, Ø., Popovic, T., Skjerve, E., et al. Magnetic separation techniques in clinical microbiology. Clin. Microbiol. Rev. (in press).Google Scholar
  85. Olsvik, Ø., Rimstad, E., Hornes, E. et al. (1991) A nested PCR followed by magnetic separation of amplified fragments for detection of Escherichia coli Shiga-like toxin genes. Molec. Cell. Probes, 5, 429–435.CrossRefGoogle Scholar
  86. Olsvik, Ø. and Strockbine, N.A. (1993) Polymerase chain reaction for detection of heat-stable, heat-labile and Shiga-like toxin genes in Escherichia coli, in Diagnostic Molecular Microbiology: Principles and Applications, (eds Persing, D.H., Tenover, F.C., Smith, T.F. and White, T.J.). American Society for Microbiology, Washington, DC, pp. 271–276.Google Scholar
  87. Olsvik, Ø., Wahlberg, J., Petterson, B., et al. (1993) Use of automated sequencing of PCR-generated amplicons to identify three types of cholera toxin subunit B on Vibrio cholerae O l strains. J. Clin. Microbiol. 31, 22–25.Google Scholar
  88. Olsvik, Ø., Wasteson, Y., Lund, A. and Hornes, E. (1991). Pathogenic Escherichia coli found in food. Int. J. Food Microbiol., 12, 103–114.CrossRefGoogle Scholar
  89. Oyofo, B.A., Thornton, S.A., Burr, D.H., et al. (1992) Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction. J. Clin. Microbiol., 30, 2613–2619.Google Scholar
  90. Pierson, D.E. and Falkow, S. (1990) Nonpathogenic isolates of yersinia enterocolitica do not contain functional inv-homologous sequences. Infect. Immunol. 58, 1059–1064.Google Scholar
  91. Popovic, T., Olsvik, Ø., Blake, P.A. and Wachsmuth, I.K. (1993) Cholera in the Americas, food borne aspects. Int. J. Food Prot., 56, 811–821.Google Scholar
  92. Roberts, T. (1989) Human illness costs of foodborne bacteria. Am. J. Agric. Economics, 71, 468–474.CrossRefGoogle Scholar
  93. Rossen, L., Holmström, K., Olsen, J.E. and Rasmussen, O.F. (1991) A rapid polymerase chain reaction (PCR)-based assay for the identification of Listeria monocytogenes in food samples. Int. J. Food Microbiol, 14, 145–152.CrossRefGoogle Scholar
  94. Rotbart, H.A. (1990) Enzymatic RNA amplification of the enteroviruses. J. Clin. Microbiol., 28, 438–442.Google Scholar
  95. Saiki, R.K. (1989) The design and optimization of the PCR, in PCR Technology, Principles and Applications for DNA Amplification (ed. Erlich, H.A.). Stockton Press, New York, pp. 7–16.Google Scholar
  96. Saiki, R.K., Scarf, S., Faloona, F.A., et al. Arnheim, N. (1985) Enzymatic amplification of B-globin sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–1354.CrossRefGoogle Scholar
  97. Saiki, R.K., Gelfand, D.H., Stoffel, et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–494.CrossRefGoogle Scholar
  98. Schuchat, A., Swaminathan, B. and Broome, C.V. (1991) Epidemiology of human listeriosis. Clin. Microbiol. Rev., 4, 169–183.Google Scholar
  99. Shirai, J., Nishibuchi, M, Ramamurthy, T., et al. (1991) Polymerase chain reaction for detection of the cholera enterotoxin operon of Vibrio cholerae. J. Clin. Microbiol., 29, 2517–2521.Google Scholar
  100. Skjerve, E. and Olsvik, Ø. (1991) Immunomagnetic separation of Salmonella from foods. Int. J. Food Microbiol., 14, 11–18.CrossRefGoogle Scholar
  101. Skjerve, E., Rørvik, L.M. and Olsvik, Ø. (1990) Detection of Listeria monocytogenes in food by immunomagnetic separation. Appl. Environl. Microbiol., 56, 3478–3481.Google Scholar
  102. Skjerve, E., Hornes, E., Cudjoe, K.S. et al. (1994) Detection of Salmonella in milk powder using immunomagnetic separation followed by colorimetric detection of a polymerase chain amplified virulence associated gene. Appl. Environ. Microbiol. (in press).Google Scholar
  103. Synder, O.P. (1992) HACCP — an industry food safety self-control program. Part IV. Dairy Food Environ., 230–232.Google Scholar
  104. Szabo, E.A., Pemberton, J.M. and Desmarchelier, P.M. (1992) Specific detection of Clostridium botulinum Type B by using the polymerase chain reaction. Appl. Environ. Microbiol., 58, 418–420.Google Scholar
  105. Tackett, C.O., Brenner, F. and Blake, P.A. (1984) Clinical features and an epidemiological study of Vibrio vulnificus infections. J. Infect. Diseases, 149, 558–561.CrossRefGoogle Scholar
  106. Tada, J., Ohashi, T., Nishimura, N., et al. (1992) Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Molec. Cell. Probes, 6, 477–487.CrossRefGoogle Scholar
  107. Tannich, E. and Burchard, G.D. (1991) Differentiation of pathogenic from nonpathogenic Entamoeba histolytica by restriction fragment analysis of a single gene amplified in vitro. J. Clin. Microbiol., 29, 250–255.Google Scholar
  108. Tauxe, R.V. and Blake, P.A. (1992) Epidemic cholera in Latin America. J. am. Med. Assoc., 267, 1388–1390.CrossRefGoogle Scholar
  109. Todd, E.C.D. (1989) Preliminary estimates of costs of foodborne disease in the United States. J. Food Prot., 52, 595–601.Google Scholar
  110. Trost, P.A., Hill, W.E., Kaysner, C.A. and Wekell, M.M. (1993) Detection of three pathogenic Vibrio species by using the polymerase chain reaction. FDA Lab. Info. Bull., No. 3733, January.Google Scholar
  111. Ugelstad, J., Berge, A., Ellingsen, T., et al. (1992) Preparation and application of new monosized polymer particles. Prog. Polym. Sci., 17, 87–161.CrossRefGoogle Scholar
  112. Uhlén, M. (1989) Magnetic separation of DNA. Nature, 340, 733–734.CrossRefGoogle Scholar
  113. Uhlén, M., Lundberg, J. and Wahlberg, J. (1990) DNA diagnosis using the polymerase chain reaction, in Application of Molecular Biology in Diagnosis of Infectious Diseases, (ed. Olsvik, Ø. and Bukholm, G.). Norwegian College of Veterinary Medicine, Oslo, pp. 86–90.Google Scholar
  114. Uhlén, M., Olsvik, Ø. and Hornes, E. (1993) Affinity separation of nucleic acids on monosized magnetic beads, in Molecular Interactions in Bioseparation, (ed. Ngo, T.T.) Plenum Press, New York (in press)Google Scholar
  115. Wernars, K., Heuvelman, C.J., Chakraborty, T. and Notermans, S.H.W. (1991) Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J. Appl. Bacteriol., 70, 121–126.CrossRefGoogle Scholar
  116. Widjojoatmodjo, M.N., Fluit, A.C., Torensma, R., et al. (1991) Evaluation of the magnetic immune PCR assay for rapid detection of Salmonella. Eur. J. Clin. Microbiol., 10, 935–938.CrossRefGoogle Scholar
  117. Wiedmann, M., Czajka, J., Barany, F. and Batt, C.A. (1992) Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction. Appl. Environ. Microbiol., 58, 3443–3447.Google Scholar
  118. Wilde, J., Eiden, J. and Yoken, R. (1990) Removal of inhibitory substances from human fecal specimens for detection of group A rotaviruses by reverse transcriptase and polymerase chain reactions. J. Clin. Microbiol., 28, 1300–1307.Google Scholar
  119. Wilson, I.G., Cooper, J.E. and Gilmour, A. (1991) Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC 1 and the thermonuclease gene Nuc. Appl. Environ. Microbiol., 57, 1793–1798.Google Scholar
  120. Wolcott, M.J. (1992) Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev., 5, 370–386.Google Scholar
  121. Wren, B.W. and Tabaqchali, S. (1990) Detection of pathogenic Yersinia enterocolitica by the polymerase chain reaction. Lancet, 336, 693.CrossRefGoogle Scholar
  122. Yamamoto, K., Wright, A.C., Kaper, J.B. and Morris, J.G., Jr. (1990) The cytolysin gene of Vibrio vulnificus: sequence and relationship to the Vibrio cholerae E1 Tor hemolysin gene. Infect. Immunol., 58, 2706–2709.Google Scholar
  123. Zhou, Y.-J., Estes, M.K., Jiang, X. and Metealf, T.G. (1991) Concentration and detection of hepatitis A virus and rotavirus from shellfish by hybridization tests. Appl. Environ. Microbiol., 57, 2963–2968.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • W. E. Hill
  • Ø. Olsvik

There are no affiliations available

Personalised recommendations