The halogen group is composed of chlorine, fluorine, bromine, and iodine. Halogens are important components of many types of compounds, especially when bonded with hydrogen. Halogens closely associate themselves with petroleum-derived organics; iodine specifically has been used in the search for hydrocarbons. All the halogens have been employed to delineate ore deposits of zinc, cooper, and gold (Boyle, 1987; Levinson, 1980). However, only iodine has been used consistently to delineate petroleum deposits (Ku-del’sky, 1977; Gallagher, 1984; Allexan et al., 1986; Singh et al., 1987; Gordon and Ikramuddin, 1988; and Tedesco and Goudge, 1989).


Iodine Content Contour Interval Seismic Line Molecular Iodine Iodine Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allexan, S., J. Fausnaugh, C. Goudge, and S. Tedesco (1986). The use of iodine in geochemical exploration for hydrocarbons, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 2, No. 1, pp. 71–93.Google Scholar
  2. Aubert, H. and M. Pinta (1977). Trace Elements in Soils, Elsevier Scientific Publishing Company, Amsterdam, pp. 248–255.Google Scholar
  3. Boyle, R. W. (1987). Gold, History and Genesis of Deposits, Van Nostrand Reinhold, New York, p. 676.Google Scholar
  4. Brookins, D. G. (1987). Eh-pH Diagrams for Geochemistry, Springer-Verlag, New York, p. 176.Google Scholar
  5. Chudecki, Z. (1960). Investigations on the iodine content and distribution of soils of western Pomerania. Roczn. gleboz., pp. 113–117 (in Polish).Google Scholar
  6. Chudecki, Z. (1963). Some factors affecting the content of copper, iodine and zinc in the fundamental soil types of West Primor’e (Poland), Zesz. Nauk Wyz. Szkol. rol. Szczecin, Vol. 10, pp. 187–239 (in Polish).Google Scholar
  7. Collins, A. G. (1969). Chemistry of some Anadarko Basin brines containing high concentrations of iodide, Chemical Geology, Vol. 4, pp. 169–187.CrossRefGoogle Scholar
  8. Collins, A. G. (1975). Geochemistry of Oil Field Waters, Elsevier Scientific Publishing Co., New York, pp. 164–166.Google Scholar
  9. Collins, A. G. and Egleson G.C. (1967). Iodine abundance in oil field brines in Oklahoma, Science, Vol. 156, pp. 934–935.CrossRefGoogle Scholar
  10. Fuge, R. (1974). Iodine, in Handbook of Geochemistry, Vol. II, Part 4, ed., K. H. Wedepohl, Springer-Verlag, New York, Chap. 53.Google Scholar
  11. Gallagher, A. V. (1984). Iodine: A pathfinder for petroleum deposits, in Unconventional Methods in Exploration III, Southern Methodist University, Dallas, TX, pp. 148–159.Google Scholar
  12. Gallego, R. and S. Oliver (1959). Estudio sobre yodo en suelos, Ann. Edafol. Fisiol. Veg., Vol. 18, pp. 207–238 (in Spanish).Google Scholar
  13. Glushenko, A. V., N. G. Zyrin, and T. K. Imadi (1964). Iodine content of light soils of terraces of the ancient valley of the Moskva, Vestn. Moskov. Univ. Ser. Biol. Pochvoved., Vol. 6, pp. 74–80 (in Russian).Google Scholar
  14. Goldsmidt, V. M. (1954). Geochemistry, Clarendon Press, Oxford, England.Google Scholar
  15. Gordon, T. L. and M. Ikramuddin (1988). The use of iodine and selected trace metals in petroleum and gas exploration. Geologic Society of America Abstracts with Programs, Vol. 20, No. 7, p. 228.Google Scholar
  16. Hagni, R. D., M. R. Bradley, R. G. Dunn, P. E. Gerdemann, J. M. Gregg, T. D. Masters, C.G. Stone, and H. M. Wharton (1986). Sediment Pb-Zn-Ba deposits of the Midcontinent, Pre-meeting field trip No. 1 Nov. 3–8, San Antonio, TX, Geological Society of America, Boulder, Colorado, p. 148.Google Scholar
  17. Hitchon, B., G. K. Billings, and J. E. Klovan (1971). Geochemistry of formation waters in the western Canada sedimentary basins. III. Factors controlling chemical composition. Geochimica, Cosmochim. Acta, Vol. 35, pp. 567–598.CrossRefGoogle Scholar
  18. Kabata-Pendias, A. and H. Pendias (1992). Trace Elements in Soils and Plants, 2nd ed., CRC Press, Boca Raton, FL, pp. 254–258.Google Scholar
  19. Karelina, L. (1961). Iodine in the soils of the Latvian SSR and occurrence of endemic goitre. Mikroelem. Urozh, Vol. 3, pp. 233–255 (in Russian).Google Scholar
  20. Karelina, L. (1965). Total iodine in soils of the Latvian SSR., Mikroelem. Prod. Rast., pp. 249–270 (in Russian).Google Scholar
  21. Katalymov, M. V. (1964). Iodine problem in geochemistry, Agrarchemie, pp. 69–80 (in Russian).Google Scholar
  22. Koch, J. T. and B. D. Kay (1987). Transportability of iodine in some organic materials from the Precambrian Shield of Ontario, Canadian Journal of Soil Science, Vol. 67, p. 353.CrossRefGoogle Scholar
  23. Kovda, V. A., and V. D. Vasil’eyvskaya (1958). A study of minor element contents in soils of the Amur River area, Soviet Soil Science, No. 12, pp. 1369–1377.Google Scholar
  24. Kudel’sky, A. V. (1977). Prediction of oil and gas properties on a basis of iodine content of subsurface waters, Geologiya Nefti i Gaza, No. 4, pp. 45–49.Google Scholar
  25. Levinson, A. A. (1980). Introduction to Exploration Geochemistry, Applied Publishing, IL, p. 924.Google Scholar
  26. Maybe, W. and T. Mill (1978). Critical review of hydrolysis of organic compounds in water under environmental conditions, Journal of Physical and Chemical Reference Data, Vol. 7, pp. 383–415.CrossRefGoogle Scholar
  27. Means, J. L. and N. J. Hubbard (1985). The organic geochemistry of deep ground waters from the Palo Duro Basin, Texas: Implications for radionuclide complexation ground water origin, and petroleum exploration, Batelle Memorial Institute, Columbus, OH. Technical Report.Google Scholar
  28. Mello, M. R., F. T. T. Gonclaves, and N. A. Babinski (1992). Hydrocarbon Exploration in the Amazon Rain Forest: A nonconventional approach using prospecting geochemistry, microbiology and remote sensing methodologies. American Association of Petroleum Geologists, National Meeting, Calgary, Alberta.Google Scholar
  29. Moore, J. W. and S. Ramamoorthy (1984). Organic Chemicals in Natural Waters, Applied Monitoring and Impact Assessment, Springer-Verlag, New York, p. 289.CrossRefGoogle Scholar
  30. Prince, N. B. and S. E. Calvert (1973). The geochemistry of iodine in oxidized and reduced marine sediments, Geochimica, Cosmochim. Acta, Vol. 37, p. 2149.CrossRefGoogle Scholar
  31. Rao, S. S., S. K. De, C. M. Tripathi, and C. Rai (1971). Retention of iodide in soil clays, Indian Journal of Agricultural Chemistry, Vol. 4, pp. 44–49.Google Scholar
  32. Runyon, H. E. and R. Rankin (1936). The bromine and iodine content of the subsurface waters of Russell, Ellis and Trego Counties, Kansas, Transactions of the Kansas Academy of Science, 39, pp. 127–128.CrossRefGoogle Scholar
  33. Shacklette, H. T. and J. G. Boergnegen (1984). Element Concentration in Soils and Other Surficial Materials of the Counterminous United States, U.S. Geologic Survey Professional Publication 1270, p. 105.Google Scholar
  34. Singh, R. R., J. G. Saxena, S. K. Sahota, and K. Chandra (1987). On the use of iodine as an indicator of petroleum in Indian basins, 1st India Oil and Natural Gas Comm. Petroleum Geochemistry and Exploration in the Afro-Asian Region International Conference Proceedings, pp. 105–107.Google Scholar
  35. Tainter, P. A. (1984). Stratigraphic and paleostructural controls on hydrocarbon migration in Cretaceous D and J sandstone of the Denver Basin, in Hydrocarbon Source Rocks of the Greater Rocky Mountain Region, eds., J. F. Woodward, F. Meissner and J. Clayton, Rocky Mountain Association of Geologists, Denver, CO, pp. 339–354.Google Scholar
  36. Tedesco, S. and C. Goudge (1989). Application of iodine surface geochemistry in the Denver-Julesburg Basin, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 5, No. 1, pp. 49–72.Google Scholar
  37. Tikomirov, R. A., S. V. Kaspatov, B. S. Prister, and V. G. Salinikov (1980). Role of organic matter in iodine fixation in soils, Soviet Soil Science, Vol. 12, pp. 64–72.Google Scholar
  38. Tinsley, I. J. (1979). Chemical Concepts in Pollutant Behavior, John Wiley & Sons, New York, p. 265.Google Scholar
  39. Vil’gusevich, I. P. and N. P. Bulgakov (1960). Microelement content in the soils of Belorussia, Soviet Soil Science, Vol. 3, pp. 319–326.Google Scholar
  40. Vinogradov, A. P. (1959). The geochemistry of rare and dispersed chemical elements in soils, Consultants Bureau, New York, p. 209 (translated from Russian).Google Scholar
  41. Whitehead, D. C. (1978). Iodine in soil profiles in relation to iron and aluminum oxides and organic matter, Journal of Soil Science, Vol. 29, pp. 88–94.CrossRefGoogle Scholar
  42. Zimovets, B. A. and A. I. Zelenova (1963). Iodine content in the soils of the Amur Basin, Soviet Soil Science, Vol. 11, pp. 1031–1039.Google Scholar
  43. Zyrin, N. G. and L. N. Bykova (1960). Iodine in some soils of Moscow Region, Vest. Moskv. Univ. Ser. Biol. Poch., Vol. 6, pp. 55–66 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Steven A. Tedesco
    • 1
  1. 1.Atoka ExplorationUSA

Personalised recommendations