Chemical Sediments

  • Douglas W. Lewis
  • David McConchie

Abstract

Strictly, chemical sediments comprise all minerals formed by inorganic processes in the sedimentary environment. In fact, biological processes are indirectly but intimately involved in the genesis of many “chemical” sediments, through their influence on chemical conditions in the depositional environment (e. g., Eh or HS- activity). Distinction between chemical sediments and minerals formed by chemical alteration of some precursor detrital or biogenic mineral is also blurred; e. g., glauconite can form by inorganic alteration of a (often biologically degraded) clayey pellet or mineral grain as well as by direct chemical precipitation. Chapter 3 provides an introduction to processes supplemental to the following discussion.

Keywords

Manganese Uranium Dolomite Apatite Miocene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

General

  1. Amstutz, G. C., and A. J. Bernard (eds. ), 1973, Ores in Sediments. Springer-Verlag, New York.Google Scholar
  2. Berner, 1981, A new geochemical classification of sedimentary en-vironments. Journal of Sedimentary Petrology 51:359–65.Google Scholar
  3. Clemmey, H., and N. Badham, 1982, Oxygen in the Precambrian atmosphere: An evaluation of the geological evidence. Geology 10: 141–6.CrossRefGoogle Scholar
  4. Cloud, P. E., 1972, A working model of the primitive earth. American Journal of Science 272:537–48.CrossRefGoogle Scholar
  5. Corliss, J. B., J. Dymond, L. I. Gordon, J. M. Edmond, R. P. van Herzen, R. D. Ballard, K. Green, D. Williams, A. Bambridge, K. Crane, and T. H. van Andel, 1979, Submarine thermal springs on the Galapagos Rift. Science 203:1073–82.CrossRefGoogle Scholar
  6. Degens, E. T., and D. Ross, 1976, Strata-bound metalliferous deposits found in or near active rifts. In K. H. Wolfe (ed. ), Handbook of Strata-Bound and Stratiform Ore Deposits, vol. 4. Springer-Verlag, New York, pp. 165–202.Google Scholar
  7. Dimroth, E., and M. M. Kimberley, 1976, Precambrian atmospheric oxygen: Evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Canadian Journal of Earth Science 13: 1161–85.CrossRefGoogle Scholar
  8. Haymon, R. M., and M. Kastner, 1981, Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth and Planetary Science Letters 53:363–81.CrossRefGoogle Scholar
  9. Híkinian, R., M. Fevrier, J. L. Bischoff, P. Picot, and W. C. Shanks, 1980, Sulphide deposits from the East Pacific Rise near 21°N. Science 207:1433–44.CrossRefGoogle Scholar
  10. Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, N. J., 582p.Google Scholar
  11. Holland, H. D., and M. Schidlowski (eds. ), 1982, Mineral Deposits and the Evolution of the Biosphere. Springer-Verlag, New York.Google Scholar
  12. Klemm, D. D., and H. -J. Schneider (eds. ), 1977, Time-and Strata-Bound Ore Deposits. Springer-Verlag, New York.Google Scholar
  13. Maynard, J. B., 1983, Geochemistry of Sedimentary Ore Deposits. Springer-Verlag, New York, 305p.CrossRefGoogle Scholar
  14. Rosler, H. J., and H. Lange, 1972, Geochemical Tables. Elsevier, Amsterdam, 468p.Google Scholar
  15. Shanks, W. C., and J. L. Bischoff, 1977, Ore transport and deposition in the Red Sea geothermal system: A geochemical model. Geochimica et Cosmochimica Acta 41:1507–19.CrossRefGoogle Scholar
  16. Skinner, B. J. (ed. ), 1981, Economic Geology, 75th Anniversary Vol-ume. Economic Geology Publishing Co., El Paso, Tex., 964p.Google Scholar
  17. Windley, B. K, P. R. Simpson, and M. D. Muir, 1984, The role of atmospheric evolution in Precambrian metallogenesis. Fortschritte der Mineralogie 62(2):253–67.Google Scholar
  18. Yariv, S., and H. Cross, 1979, Geochemistry of Colloid Systems for Earth Scientists. Springer-Verlag, Berlin.CrossRefGoogle Scholar

Evaporites

  1. Amiel, A. J., and G. M. Friedman, 1971, Continental sebkha in Arava Valley between Dead Sea and Red Sea: Significance for origin of evaporites. American Association of Petroleum Geologists Bulletin 55:581–92.Google Scholar
  2. Arakel, A. V., 1980, Genesis and diagenesis of Holocene evaporitic sediments in Hutt and Leeman lagoons, Western Australia. Journal of Sedimentary Petrology 50:1305–26.Google Scholar
  3. Arakel, A. V., 1981, Coastal sebkha and salt pan deposition in Hutt and Leeman lagoons, Western Australia, Journal of Sedimentary Petrology 50:1305–26.Google Scholar
  4. Arakel, A. V., and A. Cohen, 1991, Deposition and early diagenesis of playa glauberite in the Karinga Creek drainage system, North-em Territory, Australia. Sedimentary Geology 70:41–59.CrossRefGoogle Scholar
  5. Arakel, A. V., and D. McConchie, 1982, Classification and genesis of calcrete and gypsite lithofacies in paleodrainage systems of inland Australia and their relationship to carnotite mineralization. Journal of Sedimentary Petrology 52:1149–70.Google Scholar
  6. Bellanca, A., and R. Neri, 1986, Evaporite carbonate cycles of the Messinian, Sicily: Stable isotopes, mineralogy, textural features, and environmental implications. Journal of Sedimentary Petrology 56:614–21.Google Scholar
  7. Borchert, T. H., and R. O. Muir, 1964, Salt Deposits: The Origin, Metamorphism, and Deformation of Evaporites. D. van Nostrand, Princeton and London, 338p.Google Scholar
  8. Braitsch, O., 1971, Salt Deposits: Their Origin and Composition. Springer-Verlag, New York, 297p.CrossRefGoogle Scholar
  9. Brongersma-Sanders, M., 1968, On the geographical association of stratabound ore deposits with evaporites. Mineralium Deposita 3:286–91.CrossRefGoogle Scholar
  10. Dean, W. E., and B. C. Schreiber, 1978, Marine Evaporites. SEPM Short Course 4, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla., 188p.Google Scholar
  11. Decima, A., J. A. McKenzie, and B. C. Schreiber, 1988, The origin of “evaporative” limestones: An example from the Messinian of Sicily (Italy). Journal of Sedimentary Petrology 58:256–72.Google Scholar
  12. Degens, E. T., and D. Ross (eds. ), 1969, Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer-Verlag, Berlin, 800p.Google Scholar
  13. Folk, R. L., and J. S. Pittman, 1971, Length-slow chalcedony: A new testament for vanished evaporites. Journal of Sedimentary Petrology 41:1045–58.Google Scholar
  14. Friedman, G. M., 1972, Significance of Red Sea in problem of evaporites and basinal limestones. American Association of Petroleum Geologists Bulletin 56:1072–86.Google Scholar
  15. Hardie, C. A., and H. P. Eugster, 1971, The depositional environment of marine evaporites: A case for shallow clastic accumulation. Sedimentology 16:187–220.CrossRefGoogle Scholar
  16. Hovorka, S., 1987, Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas. Sedimentology 34:1029–54.CrossRefGoogle Scholar
  17. Hsu, K. J., 1972, Origin of saline giants: A critical review after the discovery of the Mediterranean evaporite. Earth-Science Reviews 8:371–96.CrossRefGoogle Scholar
  18. Jankowski, J., and G. Jacobson, 1989, Hydrochemical evolution of regional groundwaters to playa brines in Central Australia. Journal of Hydrology 108:123–73.CrossRefGoogle Scholar
  19. Kinsman, D. J. J., 1976, Evaporites: Relative humidity control of primary mineral facies. Journal of Sedimentary Petrology 46:273–99.Google Scholar
  20. Kirkland, D. W., and R. Evans (eds. ), 1973, Marine Evaporites: gin, Diagenesis and Geochemistry. Benchmark Papers in Geology 7, Dowden, Hutchinson & Ross, Stroudsburg, Pa., 426p.Google Scholar
  21. Kushnir, J., 1981, Formation and early diagenesis of varved evaporitic sediments in a coastal hypersaline pool. Journal of Sedimentary Petrology 51:1193–203.Google Scholar
  22. Lambert, I. B., T. H. Donnelly, J. S. R. Dunlop, and D. I. Groves, 1978, Stable isotope compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276:808–11.CrossRefGoogle Scholar
  23. Lowenstein, T. K., and L. A. Hardie, 1985, Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–44.CrossRefGoogle Scholar
  24. Mann, A. W., and R. L. Deutscher, 1978, Genesis principles for the precipitation of carnotite in calcrete drainages in western Australia. Economic Geology 73: 1724–737.CrossRefGoogle Scholar
  25. Martinez, J. D., 1971, Environmental significance of salt. American Association of Petroleum Geologists Bulletin 55:810–25.Google Scholar
  26. Melvin, J. L. (ed. ), 1991, Evaporites, Petroleum and Mineral Resources. Developments in Sedimentology 50, Elsevier, Amsterdam, 556p.Google Scholar
  27. Muir, M. D., 1987, Facies models for Australian Precambrian evaporites. In T. M. Peryt (ed. ), Evaporite Basins. Lecture Notes in Earth Sciences 13, Springer-Verlag, Berlin, pp. 5–21.CrossRefGoogle Scholar
  28. Raup, O. B., 1970, Brine mixing: An additional mechanism for formation of basin evaporites. American Association of Petroleum Geologists Bulletin 54:2246–59.Google Scholar
  29. Schmalz, R. E., 1969, Deep water evaporite deposition: A genetic model. American Association of Petroleum Geologists Bulletin 53:798–823.Google Scholar
  30. Schreiber, B. C. (ed. ), 1988, Evaporites and Hydrocarbons. Columbia University Press, New York, 475p.Google Scholar
  31. Scruton, R C., 1953, Deposition of evaporites. American Association of Petroleum Geologists Bulletin 37:2498–512.Google Scholar
  32. Stewart, F. H., 1963, Marine Evaporites. U. S. Geological Survey Professional Paper 440-Y, Washington, D. C., 53p.Google Scholar
  33. Warren, J. K., 1986, Shallow-water evaporitic environments and their source rock potential. Journal of Sedimentary Petrology 56:442–54. Iron Google Scholar

Iron

  1. Appel, P. W. U., and G. LaBerge (eds. ), 1987, Precambrian Iron Formations. Theophrastus Publications Co., Athens, 674p.Google Scholar
  2. Bass Becking, L. G. M., and D. Moore, 1950, The relation between iron and organic matter in sediments. Journal of Sedimentary Petrology 29:454–8.Google Scholar
  3. Bhattacharyya, D. P., and P. K. Kakimoto, 1982, Origin of ferriferous ooids: An SEM study of ironstone ooids and bauxite pisoids. Journal of Sedimentary Petrology 52:849–57.Google Scholar
  4. Braterman, P. S., and A. G. Cairns-Smith, 1987, Iron photo-precipitation and the genesis of the banded iron formations. In P. Appel and G. LaBerge (eds. ), Precambrian Iron Formations. Theophrastus Publications Co., Athens, pp. 215–245.Google Scholar
  5. Braterman, P. S., A. G. Cairns-Smith, and R. W. Sloper, 1983, Photo-oxidation of hydrated Fe2—significance for banded iron formations. Nature 303:163–4.CrossRefGoogle Scholar
  6. Button, A., T. D. Brock, P. J. Cook, H. P. Eugster, A. M. Goodwin, H. L. James, L. Margulis, K. H. Nealson, J. O. Nriagu, A. F. Trendall, and M. R. Walter, 1982, Sedimentary iron deposits, evaporites and phosphorites: State of the art report. In H. D. Holland and M. Schidlowski (eds. ), Mineral Deposits and the Evolution of the Biosphere. Springer-Verlag, New York, pp. 259–73.CrossRefGoogle Scholar
  7. Chauvel, J. -J., and E. Dimroth, 1974, Facies types and depositional environment of the Sokoman Iron Formation, Central Labrador Trough, Quebec, Canada. Journal of Sedimentary Petrology 44:299–327.Google Scholar
  8. Cloud, P. E., 1973, Paleoecological significances of the banded iron formation. Economic Geology 68:1135–44.CrossRefGoogle Scholar
  9. Cloud, P. E., 1983, Banded iron formations—a gradualist’s dilemma. In A. F. Trendall and R. C. Morris (eds. ), Iron Formation Facts and Problems. Developments in Precambrian Geology 6, Elsevier, Amsterdam, pp. 401–16.CrossRefGoogle Scholar
  10. Curtis, C. D., and D. A. Spears, 1968, The formation of sedimentary iron minerals. Economic Geology 63:257–70.CrossRefGoogle Scholar
  11. Czyscinski, K. S., J. B. Burnes, and G. N. Pedlow, 1978, In situ red bed development by the oxidation of authigenic pyrite in a coastal depositional environment. Palaeogeography, Palaeoclimatology, Palaeoecology 23:239–46.CrossRefGoogle Scholar
  12. Delaloye, M. F., and G. S. Odin, 1988, Chamosite, the green marine clay from Chamoson; a study of Swiss oolitic ironstones. In G. S. Odin (ed. ), Green Marine Clays. Developments in Sedimentology 45, Elsevier, Amsterdam, pp. 7–28.Google Scholar
  13. Dreyer, J., 1974, Geochemical model for the origin of Precambrian banded iron formations. Geological Society of America Bulletin 85:1099–106.CrossRefGoogle Scholar
  14. Ellwood, B. B., T. H. Chrzanowski, F. Hrouda, G. J. Long, and M. L. Buhl, 1988, Siderite formation in anoxic deep-sea sediments: A synergetic bacterially controlled process with important implications in paleomagnetism. Geological Association of America Bulletin 100:980–2.Google Scholar
  15. Ewers, W. E., and R. C. Morris, 1981, Studies on the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Economic Geology 76:1929–53.CrossRefGoogle Scholar
  16. Folk, R. L., 1978, Reddening of desert sands: Simpson Desert, N. T., Australia. Journal of Sedimentary Petrology 46:604–15.Google Scholar
  17. Garrels, R. M., E. A. Perry, and F. T. MacKenzie, 1973, Genesis of Precambrian iron formations and the development of atmospheric oxygen. Economic Geology 68:1173–9.CrossRefGoogle Scholar
  18. Gole, M. J., and C. Klein, 1981, Banded iron formations through much of Precambrian time. Journal of Geology 89:169–83.CrossRefGoogle Scholar
  19. Goode, A. D. T., W. D. M. Hall, and J. A. Bunting, 1983, The Nabberu Basin of Western Australia. In A. F. Trendall and R. C. Morris (eds. ), Iron Formation Facts and Problems. Developments in Precambrian Geology 6, Elsevier, Amsterdam, pp. 295–323.CrossRefGoogle Scholar
  20. Hall, W. D. M., and A. D. T. Goode, 1978, The early Proterozoic Nabberu Basin and associated iron formations in western Australia. Precambrian Research 7:129–84.CrossRefGoogle Scholar
  21. Harder, H., 1978, Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals 26:65–72.CrossRefGoogle Scholar
  22. Holland, H. D., 1973, The oceans: A possible source of iron in iron formations. Economic Geology 68:1169–73.CrossRefGoogle Scholar
  23. James, H. L., 1966, Chemistry of the Iron-rich Sedimentary Rocks. U. S. Geological Survey Professional Paper 440W, Washington, D. C., 61p.Google Scholar
  24. James, H. L., and A. F. Trendall, 1982, Banded iron formations: Distribution in time and paleoenvironmental significance. In H. 200 Chemical Sediments D. Holland and M. Schidlowski (eds. ), Mineral Deposits and the Evolution of the Biosphere. Springer-Verlag, New York, pp. 199–217.Google Scholar
  25. James, H. L., and F. B. van Houten, 1979, Miocene goethitic and chamositic oolites, northeastern Colombia. Sedimentology 26:125–33.CrossRefGoogle Scholar
  26. Kimberley, M. M., 1979, Origin of oolitic iron formations. Journal of Sedimentary Petrology 49:111–32.Google Scholar
  27. Klein, C., and O. P. Bricker, 1977, Some aspects of the sedimentary and diagenetic environment of Proterozoic banded iron formation. Economic Geology 72:1457–70.CrossRefGoogle Scholar
  28. Krynine, P. D., 1948, The origin of red beds. New York Academy of Science Transactions 11:60–8.CrossRefGoogle Scholar
  29. Lepp, H. (ed. ), 1975, Geochemistry of Iron. Benchmark Papers in Geology 18, Dowden, Hutchinson & Ross, Stroudsburg, Pa., 464p.Google Scholar
  30. McConchie, D. M., 1987, The geology and geochemistry of the Joffre and Whaleback shale members of the Brockman Iron Formation, western Australia. In P. Appel and G. LaBerge (eds. ), Precambrian Iron Formations. Theophrastus Publications Co., City, pp. 541–601.Google Scholar
  31. Morris, R. C., and R. C. Horwitz, 1983, The origin of the iron-formation-rich Hamersley Group of western Australia—deposition on a platform. Precambrian Research 21:273–97.CrossRefGoogle Scholar
  32. Nealson, K. H., 1982, Microbiological oxidation and reduction of iron. In H. D. Holland and M. Schidlowski (eds. ), Mineral Deposits and the Evolution of the Biosphere. Springer-Verlag, New York, pp. 51–65.CrossRefGoogle Scholar
  33. Odin, G. S., R. W. O’B. Knox, R. A. Gygi, and S. Guerrak, 1988, Green marine clays from the oolitic ironstone facies: Habit, mineralogy, environment. In G. S. Odin (ed. ), Green Marine Clays. Developments in Sedimentology 45, Elsevier, Amsterdam, pp. 29–52.Google Scholar
  34. Pye, K., J. A. D. Dickson, N. Schiavon, M. L. Colemen, and M. Cox, 1990, Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 37:325–43.CrossRefGoogle Scholar
  35. Rohrlich, K., N. B. Price, and S. E. Calvert, 1969, Chamosite in the recent sediments of Loch Etive, Scotland. Journal of Sedimentary Petrology 38:624–31.Google Scholar
  36. Trendall, A. F., 1968, Three great basins of Pre-Cambrian iron formation deposition: A systematic comparison. Geological Society of America Bulletin 79:1527–44.CrossRefGoogle Scholar
  37. Trendall, A. F., and J. G. Blockley, 1970, The Iron Formations of the Precambrian Hamersley Group Western Australia with Special Reference to the Associated Crocidolite. Geological Survey of Western Australia Bulletin 119,366p.Google Scholar
  38. Trendall, A. F., and R. C. Morris (eds. ), 1983, Iron Formation Facts and Problems. Developments in Precambrian Geology 6, Elsevier, Amsterdam, 558p.Google Scholar
  39. van Houten, F. B., 1973, Origin of red beds: A review-1961–1972. Annual Review of Earth and Planetary Science 1:39–61.CrossRefGoogle Scholar
  40. van Houten, F. B., and D. P. Bhattacharyya, 1982, Phanerozoic oolitic ironstones—geologic record and facies. Annual Reviews of Earth and Planetary Science 10:441–58.CrossRefGoogle Scholar
  41. van Houten, F. B., and M. E. Purucher, 1984, Glauconitic peloids and chamositic ooids—favorable factors, constraints, and problems. Earth-Science Reviews 20:211–244.CrossRefGoogle Scholar
  42. Walker, T. R., 1967, Formation of red beds in modern and ancient deserts. Geological Society of America Bulletin 78:353–68. (See also 1968 discussion by R. E. Schmalz, and reply, Geological Society of America Bulletin 79:277–82. )Google Scholar
  43. Walker, T. R., 1974, Formation of red beds in moist tropical climates: A hypothesis. Geological Society of America Bulletin 85:633–8.CrossRefGoogle Scholar
  44. Ziegler, A. M., and W. S. McKerrow, 1975, Silurian marine red beds. American Journal of Science 275:31–57.CrossRefGoogle Scholar

Phosphates

  1. Bentor, Y. K., 1980, Marine Phosphorites—Geochemistry, Occurrence, Genesis. Society of Economic Paleontologists and Mineralogists Special Publication 29, Tulsa, Okla., 249p.Google Scholar
  2. Cook, P. J., and M. W. McElhinny, 1979, A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology 74:315–30.CrossRefGoogle Scholar
  3. d’Anglejan, B. F., 1967, Origin of marine phosphorites off Baja California, Mexico. Marine Geology 5:15–44.CrossRefGoogle Scholar
  4. De Keyser, F., and P. J. Cook, 1972, Geology of the Middle Cambrian Phosphorites and Associated Sediments in Northwestern Queensland. Bureau of Mineral Resources, Geology and Geophysics Bulletin 138, ‘79p.Google Scholar
  5. Geological Society of London, 1980, Phosphatic and glauconitic sediments. Journal of the Geology Society of London 137:657–805.CrossRefGoogle Scholar
  6. McKelvey, V. E., 1967, Phosphate Deposits. U. S. Geological Survey Bulletin 1252-D, Washington, D. C., 21p.Google Scholar
  7. Notholt, A. J. G., 1980, Economic phosphatic sediments: Mode of occurrence and stratigraphical distribution. Journal of the Geological Society of London 137:793–805.CrossRefGoogle Scholar
  8. Pasho, D. W., 1976, Distribution and Morphology of Chatham Rise Phosphorites. New Zealand Oceanographic Institute Memoir 77, Wellington, N. Z., 27p.Google Scholar
  9. Roberson, C. E., 1966, Solubility Implications of Apatite in Sea Water. U. S. Geological Survey Professional Paper 500-D, Washington, D. C., pp. 178–85.Google Scholar
  10. Soudry, D., 1987, Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel). Sedimentology 34:641–60.CrossRefGoogle Scholar
  11. Southgate, P. N., 1986, Cambrian phoscrete profiles, coated grains, and microbial processes in phosphogenesis: Georgina Basin, Australia. Journal of Sedimentary Petrology 56:429–41.Google Scholar
  12. Youssef, M. I., 1965, Genesis of bedded phosphates. Economic Geology 60:590–600. Silica CrossRefGoogle Scholar

Silica

  1. Davies, T. A., and P. R. Supko, 1973, Oceanic sediments and their diagenesis: Some examples from deep-sea drilling. Journal of Sedimentary Petrology 43:381–90.Google Scholar
  2. Greenwood, R., 1973, Cristobalite: Its relationship to chert formation in selected samples from the Deep Sea Drilling Project. Journal of Sedimentary Petrology 43:700–8.Google Scholar
  3. Iler, R. K., 1979, The Chemistry of Silica. Wiley-Interscience, New York, 866p.Google Scholar
  4. Krauskopf, K. B., 1959, The geochemistry of silica in sedimentary environments. In H. A. Ireland (ed. ), Silica in Sediments. Society of Economic Paleontologists and Mineralogists Special Publication 7, pp. 4–19.Google Scholar
  5. Oehler, J. H., 1976, Hydrothermal crystallization of silica gel. Geological Society of America Bulletin 87:1143–52.CrossRefGoogle Scholar
  6. Smale, D., 1973, Silcretes and associated silica diagenesis in southern Africa and Australia. Journal of Sedimentary Petrology 43:1077–89. Manganese Google Scholar

Manganese

  1. Glasby, G. P. (ed. ) 1977, Marine Manganese Deposits. Elsevier, Amsterdam, 523p.Google Scholar
  2. Heath, G. R., 1979, Burial rates, growth rates and size distributions of deep-sea manganese nodules. Science 205:903–4.CrossRefGoogle Scholar
  3. Heath, G. R., 1981, Ferromanganese nodules of the deep sea. In B. J. Skinner (ed. ) Economic Geology 75th Anniversary Volume.Economic Geology Publishing Co., El Paso, Tex., pp. 736–65.Google Scholar
  4. Krauskopf, K. B., 1957, Separation of manganese from iron in sedi-mentary processes. Geochimica et Cosmochimica Acta 12:61–84. Ku, T. L., 1977, Rates of accretion. In G. P. Glasby (ed. ), Marine Manganese Deposits. Elsevier, Amsterdam, pp. 249–67.Google Scholar
  5. McKelvey, V. E., N. A. Wright, and R. W. Rowland, 1979, Manga-nese nodule resources in the northeastern equatorial Pacific. In J. L. Bischoff and D. Z. Piper (eds. ), Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press, New York, 842p.Google Scholar
  6. Ostwald, J., 1975, Mineralogy of manganese oxides from Groote Eylandt. Mineralium Depositum 10:1–12.CrossRefGoogle Scholar
  7. Ostwald, J., 1980, Aspects of the mineralogy, petrology, and genesis of the Groote Eylandt manganese ores. In I. M. Varentsov and Gy. Grasselly (eds. ), Geology and Geochemistry of Manganese, vol. 2. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 149–82.Google Scholar
  8. Taylor, J. H. 1969, Sedimentary ores of iron and manganese and their origin. Proceedings 15th Inter-University Geological Congress, 1967—Sedimentary Ores: Ancient and Modern. University of Leicester, pp. 171–86.Google Scholar
  9. Varentsov, I. M., and V. P. Rakhmanov, 1980, Manganese deposits of the USSR (a review). In I. M. Varentsov and Gy. Grasselly (eds. ), Geology and Geochemistry of Manganese, vol. 2. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 319–92.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Douglas W. Lewis
  • David McConchie

There are no affiliations available

Personalised recommendations