Skip to main content

Composition of Detrital Sediments

  • Chapter
Practical Sedimentology

Abstract

Composition of sediments refers to the chemical and mineralogical makeup of the constituent particles, which may be individual minerals, combinations of minerals as in rock fragments, organic particles or constituents chemically precipitated in the depositional or diagenetic environment. In this chapter we treat sediments comprising more than 50% detritus from preexisting igneous, metamorphic, or sedimentary rocks. Some authors call these clastic sediments, but since most limestones are composed largely of fossil clasts (broken fragments), they too are properly clastic; hence the word detrital (or siliciclastic ) is more definitive. The composition of detrital gravel and sand is dictated by the composition of the source rocks and is influenced by climatic and diagenetic processes (and rarely, by environmental sorting processes); the tectonics of the source area and basin of deposition are also influential insofar as they determine the kinds of source rocks exposed and the rate at which the sediments are buried (see Chapter 2); time is implicit as a factor as well. In contrast, the composition of clay minerals is generally related to climatic and diagenetic processes, and although many clay minerals are derived from the alteration of detrital minerals, it is rare that the original mineral can be definitively identified; many clay minerals also form in the depositional or diagenetic environment by chemical precipitation. Hence only clay minerals derived from preexisting sedimentary rocks are truly detrital, and it is appropriate to treat clays with colloids separately in Chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

Arenites—General

  • Boswell, P. G. H., 1960, The term greywacke. Journal of Sedimentary Petrology 30:154–7.

    Google Scholar 

  • Brewer, R., 1976, Fabric and Mineral Analysis of Soils. Robert E. Krieger Publishing, Huntington, New York, 482 p.

    Google Scholar 

  • Cameron, K. L., and H. Blatt, 1971, Durabilities of sand-size schist and “volcanic“ rock fragments during fluvial transport, Elk Creek, Black Hills, South Dakota. Journal of Sedimentary Petrology 41:565–76.

    Google Scholar 

  • Carozzi, A. V., 1960, Microscopic Sedimentary Petrography. Wiley, New York, 405p.

    Google Scholar 

  • Davies, D. K., and F. G. Ethridge, 1975, Sandstone composition and depositional environment. American Association of Petroleum Geologists Bulletin 59:239–64.

    Google Scholar 

  • Dickinson, W. R., 1970, Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology 40:695–707.

    Google Scholar 

  • Dott, R. H., Jr., 1964, Wacke, greywacke and matrix—what approach to immature sandstone classification? Journal of Sedimentary Petrology 34:625–32.

    Google Scholar 

  • Dryden, L., and C. Dryden, 1946. Comparative rates of weathering of some common heavy minerals. Journal of Sedimentary Petrology 16:91–96.

    Google Scholar 

  • Fedo, C. M., and J. D. Cooper, 1990, Braided fluvial to marine transition: The basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. Journal of Sedimentary Petrology 60:220–34.

    Google Scholar 

  • Fieldes, M., and L. D. Swindale, 1954, Chemical weathering of silicates in soil formation. New Zealand Journal of Science and Technology 36B:140–154.

    Google Scholar 

  • Fisher, R. V., and H. -U. Schmincke, 1984, Pyroclastic Rocks. Springer-Verlag, New York, 472p.

    Google Scholar 

  • Folk, R. L., 1954, The distinction between grain size and mineral composition in sedimentary rocks. Journal of Geology 62: 344–59.

    Google Scholar 

  • Folk, R. L., 1980, Petrology of Sedimentary Rocks. Hemphill, Austin, Tex., 182p.

    Google Scholar 

  • Folk, R. L., P. B. Andrews, and D. W. Lewis, 1970, Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics 13: 937–68.

    Google Scholar 

  • Friese, F. W., 1931, Untersuchungen von mineralal auf abnutzbarkeit bei verfrachtung im wasser. Mineralogische und Petro-graphische Mitteilungen 41:1–7.

    Google Scholar 

  • Ingersoll, R. V., T. F. Bullard, R. L. Ford, J. P. Grimm, J. D. Pickle, and S. W. Sares, 1984, The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Petrology 54:103–16.

    Google Scholar 

  • Jackson, M. L., and G. D. Sherman, 1953, Chemical weathering of minerals in soils. Advances in Agronomy 5:219–318.

    Google Scholar 

  • Klein, G. deV., 1963, Analysis and review of sandstone classifications in the North American geological literature, 1940–1960. Geological Society of America Bulletin 74:555–75.

    Google Scholar 

  • Lewis, D. W., 1964, “Perigenic”: A new term. Journal of Sedimentary Petrology 34:875–6.

    Google Scholar 

  • Lewis, D. W., 1971, Qualitative petrographic interpretation of Potsdam Sandstone (Cambrian), Southwest Quebec. Canadian Journal of Earth Sciences 8:853–82.

    Google Scholar 

  • Lyell, C., 1837, Principles of Geology, vol. 1, 5th ed. John Murray, London, 462p.

    Google Scholar 

  • McBride, E. F., 1987, Diagenesis of the Maxon Sandstone (early Cretaceous), Marathon region, Texas: A diagenetic quartzarenite. Journal of Sedimentary Petrology 57:98–107.

    Google Scholar 

  • McConchie, D. M., 1987, The geology and geochemistry of the Joffre and Whaleback Shale Members of the Brockman Iron Formation, Western Australia. In P. Appel and G. LaBerge (eds. ), Precambrian Iron Formations. Theophrastus Publications, pp. 541–601.

    Google Scholar 

  • Mack, G. H., 1978, The survivability of labile light mineral grains in fluvial, aeolian, and littoral marine environments: The Permian Cutler and Cedar Mesa Formations, Moab, Utah. Sedimentology 25:587–604.

    Google Scholar 

  • Oriel, S. S., 1949, Definitions of arkose. American Journal of Science 247:824–29.

    Google Scholar 

  • Pettijohn, F. J., 1943, Archean sedimentation. Geological Society of America Bulletin 54:925–72.

    Google Scholar 

  • Pettijohn, F. J., 1963, Chemical composition of sandstones—excluding carbonate and volcanic sands. U. S. Geological Survey Professional Paper 440-S, 21p.

    Google Scholar 

  • Pettijohn, F. J., 1975, Sedimentary Rocks, 3d ed. Harper & Row, New York, 628p.

    Google Scholar 

  • Runkel, A. C., 1990, Lateral and temporal changes in volcanogenic sedimentation: Analysis of two Eocene sedimentary aprons, Big Bend region, Texas. Journal of Sedimentary Petrology 60: 747–60.

    Google Scholar 

  • Scholle, P. A., 1979, A color illustrated guide to constituents, textures, cements and porosities of sandstones and associated rocks. American Association of Petroleum Geologists Memoir 28, Tulsa, Okla., 201p.

    Google Scholar 

  • Smithson, F., 1941, The alteration of detrital minerals in the Meso-zoic rocks of Yorkshire. Geological Magazine 78:97–112.

    Google Scholar 

  • Thiel, G. A., 1940, The relative resistance to abrasion of mineral grains of sand size. Journal of Sedimentary Petrology 10:103–124.

    Google Scholar 

  • Weyl, R., 1952, Studies of heavy minerals in soil profiles. Zeitschrift Pflernahr Dung., Bodenkunde 57:135–141.

    Google Scholar 

  • Wolf, K. H., 1971, Textural and compositional transitional stages between various lithic grain types (with a comment on “interpreting detrital modes of greywacke and arkose”). Journal of Sedimentary Petrology 41:889.

    Google Scholar 

Arenites-Provenance

  • Basu, A., S. W. Young, L. J. Suttner, W. C. James, and G. H. Mack, 1975, Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology 45:873–82.

    Google Scholar 

  • Blatt, H., 1967a, Provenance determinations and recycling of sediments. Journal of Sedimentary Petrology 37:1031–44.

    Google Scholar 

  • Blatt, H., 1967b, Original characteristics of clastic quartz grains. Journal of Sedimentary Petrology 37:401–24.

    Google Scholar 

  • Boggs, S. J., 1968, Experimental study of rock fragments. Journal of Sedimentary Petrology 38:1326–39.

    Google Scholar 

  • Gilligan, A., 1919, The petrology of the Millstone Grit of Yorkshire. Quarterly Journal of the Geological Society of London 75:251–92.

    Google Scholar 

  • Keller, W. R., and R. F. Littlefield, 1950, Inclusions in the quartz of igneous and metamorphic rocks. Journal of Sedimentary Petrology 20:74–84.

    Google Scholar 

  • Krynine, P. D., 1940, Petrology and Genesis of the Third Bradford Sand. Pennsylvania State College Min. Ind. Experimental Station Publ. No. 29,134p.

    Google Scholar 

  • Pittman, E. D., 1970, Plagioclase feldspar as an indicator of provenance in sedimentary rocks. Journal of Sedimentary Petrology 40:591–8.

    Google Scholar 

  • Sanderson, I. D., 1984, Recognition and significance of inherited quartz overgrowths in quartz arenites. Journal of Sedimentary Petrology 54:473–86.

    Google Scholar 

  • Van Der Plas, L., 1966, The Identification of Detrital Feldspars. Developments in Sedimentology 6, Elsevier, New York, 305p.

    Google Scholar 

  • Young, S. T., 1976, Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. Journal of Sedimentary Petrology 46:595–603.

    Google Scholar 

  • Zuffa, G. G. (ed. ), 1985, Provenance ofArenites. D. Reidel Publishing Co., Dordrecht, Holland, 408p.

    Google Scholar 

Arenites-Tectonics

  • Dickinson, W. R., and C. A. Suczek, 1979, Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin 63:2164–82.

    Google Scholar 

  • Dorsey, R. J., 1988, Provenance evolution and unroofing history of a modern arc-continent collision: Evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan. Journal of Sedimentary Petrology 58:208–18.

    Google Scholar 

  • Girty, G. H., and A. Armitage, 1989, Composition of Holocene Colorado River sand: An example of mixed-provenance sand derived from multiple tectonic elements of the Cordilleran continental margin. Journal of Sedimentary Petrology 59:597–604.

    Google Scholar 

  • Krynine, P. D., 1942, Differential sedimentation and its products during one complete geosynclinal cycle. 1st Pan American Congress of Mining and Engineering Geology Annals (Mexico) 2:537–61.

    Google Scholar 

  • Ingersoll, R. V., 1990, Actualistic sandstone petrofacies: Discrimi-nating modern and ancient source rocks. Geology 18:733–6.

    Google Scholar 

  • Mack, G. H., 1984, Exceptions to the relationship between plate tectonics and sandstone composition. Journal of Sedimentary Petrology 54:212–20.

    Google Scholar 

  • Molinaroli, E., M. Blom, and A. Basu, 1991, Methods of provenance determination tested with discriminant function analysis. Journal of Sedimentary Petrology 61:900–8.

    Google Scholar 

  • Ruxton, B. P., 1970, Labile quartz-poor sediments from young mountain ranges in northeast Papua. Journal of Sedimentary Petrology 40:1262–70.

    Google Scholar 

  • Smith, G. A., 1988, Sedimentology of proximal to distal volcaniclastics dispersed across an active fold belt: Ellensburg Formation (late Miocene), central Washington. Sedimentology 35:953–77.

    Google Scholar 

  • Valloni, R., and G. Mezzadri, 1984, Compositional suites of terrigenous deep-sea sands of the present continental margins. Sedimentology 31:353–64.

    Google Scholar 

  • Velbel, M. A., 1985, Mineralogically mature sandstones in accre-tionary prisms. Journal of Sedimentary Petrology 55:685–90.

    Google Scholar 

Arenites-Climate

  • Akhtar, K., and A. H. M. Ahmad, 1991, Single-cycle cratonic quartzarenites produced by tropical weathering: The Nimur Sandstone (Lower Cretaceous), Narmada Basin, India. Sedimentary Geology 71:23–32.

    Google Scholar 

  • Ataman, G., and S. L. Gokcen, 1975, Determination of source and palaeoclimate from the comparison of grain and clay fractions in sandstones: A case study. Sedimentary Geology 13:81–107.

    Google Scholar 

  • Basu, A., 1976, Petrology of Holocene fluvial sand derived from plutonic source rocks: Implications to paleoclimatic interpretation. Journal of Sedimentary Petrology 46:694–709.

    Google Scholar 

  • Basu, A., 1985, Influence of climate and relief on compositions of sands released at source areas. In G. G. Zuffa (ed. ), Provenance of Arenites, D. Reidel Publishing Co., Dordrecht, Holland, pp. 1–18.

    Google Scholar 

  • Crook, K. A. W., 1967, Tectonics, climate, and sedimentation, 7th Sedimentological Congress.

    Google Scholar 

  • Dutta, P. K., and L. J. Suttner, 1986, Alluvial sandstone composition and paleoclimate, II. Authigenic mineralogy. Journal of Sedimentary Petrology 56:346–58.

    Google Scholar 

  • Girty, G. H., 1991, A note on the composition of plutoniclastic sand produced in different climatic belts. Journal of Sedimentary Petrology 61:428–32.

    Google Scholar 

  • Grantham, J. H., and M. A. Velbel, 1988, The influence of climate and topography on rock-fragment abundance in modern fluvial sands of the southern Blue Ridge Mountains, North Carolina. Journal of Sedimentary Petrology 58:219–27.

    Google Scholar 

  • Johnsson, M. J., 1990, Tectonic versus chemical-weathering controls on the composition of fluvial sands in tropical environments. Sedimentology 37:713–26.

    Google Scholar 

  • Johnsson, M. J., and R. H. Meade, 1990, Chemical weathering of fluvial sediments during alluvial storage: The Macuapanim Island point bar, Solimoes River, Brazil. Journal of Sedimentary Petrology 60:827–42.

    Google Scholar 

  • Johnsson, M. J., and R F Stallard, 1989, Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama. Journal of Sedimentary Petrology 59:768–81.

    Google Scholar 

  • Mack, G. H. L., and L. J. Suttner, 1977, Paleoclimate interpretation from a petrographic comparison of Holocene sands and the Fountain Formation (Pennsylvanian) in the Colorado Front Range. Journal of Sedimentary Petrology 47:89–100.

    Google Scholar 

  • Suttner, L. J., A. Basu, and G. H. Mack, 1981, Climate and the origin of quartz arenites. Journal of Sedimentary Petrology 51:1235–46.

    Google Scholar 

  • Suttner, L. J., and P. K. Dutta, 1986, Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology 56:329–45.

    Google Scholar 

  • Todd, T. W., 1968, Paleoclimatology and the relative stability of feldspar minerals under atmospheric conditions. Journal of Sedimentary Petrology 38:832–44.

    Google Scholar 

Arenites-Heavy Minerals

  • Basu, A., and E. Molinaroli, 1989, Provenance characteristics of detrital opaque Fe-Ti oxide minerals. Journal of Sedimentary Petrology 59:922–34.

    Google Scholar 

  • Force, E. R., 1980, The provenance of rutile. Journal of Sedimentary Petrology 50:485–8.

    Google Scholar 

  • Grigsby, J. D., 1990, Detrital magnetite as a provenance indicator. Journal of Sedimentary Petrology 60:940–51.

    Google Scholar 

  • Hubert, J. F., 1962, A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Petrology 32:440–50.

    Google Scholar 

  • Krynine, P. D., 1946, The tourmaline group in sediments. Journal of Geology 54:65–88.

    Google Scholar 

  • Lowright, R., E. G. Williams, and F. Dachille, 1972, An analysis of factors controlling deviations in hydraulic equivalence in some modern sands. Journal of Sedimentary Petrology 42:635–45.

    Google Scholar 

  • Marshall, B., 1967, The present status of zircon. Sedimentology 9:119–36.

    Google Scholar 

  • Pettijohn, F. J., 1941, Persistence of heavy minerals in geologic time. Journal of Geology 49:610–25.

    Google Scholar 

  • Raeside, J. D., 1959, Stability of index minerals in soils with particular reference to quartz, zircon, and garnet. Journal of Sedimentary Petrology 29:493–502.

    Google Scholar 

  • Rice, R. M., D. S. Gorsline, and R. H. Osborne, 1976, Relationships between sand input from rivers and the composition of sands from the beaches of Southern California. Sedimentology 23:689–703.

    Google Scholar 

  • Rittenhouse, G., 1943, Transportation and deposition of heavy minerals. Geological Society of America Bulletin 54:1725–80.

    Google Scholar 

  • Saxena, S. K., 1966, Evolution of zircons in sedimentary and metamorphic rocks. Sedimentology 6:493–502.

    Google Scholar 

  • Slingerland, R., 1984, Role of hydraulic sorting in the origin of flu-vial placers. Journal of Sedimentary Petrology 54:137–50.

    Google Scholar 

  • Stapor, F. W., Jr., 1973, Heavy mineral concentrating processes and density/shape/size equilibria in the marine and coastal dune sands of the Apalachicola, Florida, region. Journal of Sedimentary Petrology 43:396–407.

    Google Scholar 

  • Steidtmann, J. R., 1982, Size-density sorting of sand-size spheres during deposition from bedload transport and implications concerning hydraulic equivalence. Sedimentology 29:877–83.

    Google Scholar 

  • van Andel, T. J. H., 1959, Reflections on the interpretation of heavy mineral analyses. Journal of Sedimentary Petrology 29:153–63.

    Google Scholar 

Rudites

  • Abbott, P. L., and G. L. Peterson, 1978, Effects of abrasion durability on conglomerate clast populations: Examples from Cretaceous and Eocene conglomerates of the San Diego area. Journal of Sedimentary Petrology 48:31–42.

    Google Scholar 

  • Laznicka, P., 1988, Breccias and Coarse Fragmentites: Petrology, Environments, Associations, Ores. Developments in Economic Geology 25, Elsevier, New York, 832p.

    Google Scholar 

  • Smith, N. D., 1972, Flume experiments on the durability of mud clasts. Journal of Sedimentary Petrology 42:378–83.

    Google Scholar 

  • Twenhofel, W. H., 1947, The environmental significance of con-glomerates. Journal of Sedimentary Petrology 17:99–128.

    Google Scholar 

  • Williams, G. D., 1966, Origin of shale-pebble conglomerate. Ameri-can Association of Petroleum Geologists Bulletin 50:573–7.

    Google Scholar 

  • Wilson, M. D., 1970, Upper Cretaceous-Paleocene synorogenic conglomerates of southwestern Montana. American Association of Petroleum Geologists Bulletin 54:1843–67.

    Google Scholar 

Lutites

  • Anderson, D. W., and M. D. Picard, 1971, Quartz extinction in siltstone. Geological Society of America Bulletin 82:181–6.

    Google Scholar 

  • Blatt, H., 1985, Provenance studies and mudrocks. Journal of Sedimentary Petrology 55:69–75.

    Google Scholar 

  • Chamley, H., 1989, Clay Sedimentology. Springer-Verlag, Berlin, 623p.

    Google Scholar 

  • Hesse, R. (ed. ), 1984, Sedimentology of Siltstone and Mudstone. Sedimentary Geology (special issue) 41:113–300.

    Google Scholar 

  • Potter, P. E., J. B. Maynard, and W. A. Pryor, 1980, Sedimentology of Shale. Springer-Verlag, New York, 306p.

    Google Scholar 

  • Shaw, D. B., and C. E. Weaver, 1965, The mineralogical composi-tion of shales. Journal of Sedimentary Petrology 35:213–22.

    Google Scholar 

  • Tourtelot, H. A., 1960, Origin and use of the word shale. American Journal of Science 258A:335–43.

    Google Scholar 

  • Weaver, C. E., 1989, Clays, Muds, and Shales. Developments in Sedimentology 44, Elsevier, Amsterdam, 819p.

    Google Scholar 

  • Yaalon, D. H., 1962, Mineral composition of the average shale. Clay Minerals Bulletin 5:31–6.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lewis, D.W., McConchie, D. (1994). Composition of Detrital Sediments. In: Practical Sedimentology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2634-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2634-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6130-5

  • Online ISBN: 978-1-4615-2634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics