Skip to main content

Sedimentary Structures

  • Chapter
Practical Sedimentology
  • 1162 Accesses

Abstract

A wide variety of structures are formed by physical, chemical, and biological processes during or shortly after deposition; Fig. 4–1 categorizes many by their mode of origin. These structures are the best indicators in any deposit of processes operating in the depositional environment because they formed where they are presently found. Hence, they provide powerful tools for assessing the influence of processes that could not be observed because the processes operate infrequently and/or in remote sites (e. g., current patterns and sediment movement during a major storm; concretions forming below the sediment-water interface), or because they operate at a rate unsuited to direct observation (either too rapidly or too slowly). Although there are instrumental techniques for assessing sediment dynamics and other processes in modern environments (e. g., see ASChapters 4 and 6), a skilled observer can make reliable assessments of the nature and extent of sediment movement, and of the processes controlling sediment movement, solely on the basis of preserved sedimentary structures. Use of sedimentary structures in this way requires an extensive knowledge of the types of structures formed by particular processes acting on different sediments in various environments. When dealing with sedimentary rocks, interpretation of the processes controlling deposition is a fundamental step in paleoenvironmental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

General

  • Allen, J. R. L., 1967, Notes on some fundamentals of paleocurrent analysis with reference to preservation potential and sources of variance. Sedimentology 9:75–88.

    Article  Google Scholar 

  • Allen, J. R. L., 1982, Sedimentary Structures: Their Character and Physical Basis. Developments in Sedimentology 30A, Elsevier, Amsterdam, 593p.

    Google Scholar 

  • Allen, J. R. L., 1985, Principles of Physical Sedimentology. George Allen & Unwin, London, 272p.

    Book  Google Scholar 

  • Bailey, R. J., 1967, Paleocurrents and paleoslopes. Journal of Sedimentary Petrology 37:1252–5.

    Google Scholar 

  • Collinson, J. D., and D. B. Thompson, 1985, Sedimentary Structures. George Allen & Unwin, London, 194p.

    Google Scholar 

  • Coneybeare, C. E. B., and K. A. W. Crook, 1968, Manual of Sedimentary Structures. Bureau of Mineral Resources, Geology and Geophysics Bulletin 102,327p.

    Google Scholar 

  • DeCelles, P. G., M. B. Gray, K. D. Ridgway, R. B. Cole, D. A. Pivnik, N. Pequera, and P. Srivastava, 1991, Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology 38:567–90.

    Article  Google Scholar 

  • Dzulynski, S., and E. K. Walton, 1963, Sedimentary Features of Flysch and Greywacke. Developments in Sedimentology 7, Elsevier, Amsterdam, 274p.

    Google Scholar 

  • Klein, G. deV., 1967, Paleocurrent analysis in relation to modern marine dispersal patterns. American Association of Petroleum Geologists Bulletin 51:366–82.

    Google Scholar 

  • Potter, P. E., and F. J. Pettijohn, 1977, Paleocurrents and Basin Analysis. Springer-Verlag, New York, 425p.

    Book  Google Scholar 

  • Reineck, H. -E., and I. B. Singh, 1980, Depositional Sedimentary Environments, 2d ed. Springer-Verlag, New York, 439p.

    Book  Google Scholar 

  • Schwartz, H. -H., 1975, Sedimentary structures and facies analysis of shallow marine carbonates. Contributions to Sedimentology 3:1–100.

    Google Scholar 

  • Shawa, M. S. (ed. ), 1974, Use of Sedimentary Structures for Recognition of Clastic Environments. Canadian Society Petroleum Geologists, Calgary, Canada, 66p.

    Google Scholar 

  • Shrock, R. R., 1948, Sequence in Layered Rocks. McGraw-Hill, New York, 507p.

    Google Scholar 

  • Allen, J. R. L., 1963, The classification of cross-stratified units, with notes on their origin. Sedimentology 2:93–114.

    Article  Google Scholar 

  • Allen, J. R. L., 1968, Current Ripples. Elsevier, Amsterdam, 433p.

    Google Scholar 

  • Allen, J. R. L., 1977, The plan shape of current ripples in relation to flow conditions. Sedimentology 24:53–62.

    Article  Google Scholar 

  • Ashley, G. M. (chairperson), and others, 1990, Classification of large-scale subaqueous bedforms: A new look at an old problem. Journal of Sedimentary Petrology 60:160–72.

    Google Scholar 

  • Bishop, D. G., and E. R. Force, 1969, The reliability of graded bedding as an indicator of the order of superposition. Journal of Geology 77:346–52.

    Article  Google Scholar 

  • Bourgeois, J., 1980, A transgressive shelf sequence exhibiting hummocky stratification—the Cape Sebastian Sandstone (Upper Cretaceous), southwestern Oregon. Journal of Sedimentary Petrology 50:681–702.

    Google Scholar 

  • Bridge, J. S., 1978, Origin of horizontal lamination under turbulent boundary layers. Sedimentary Geology 20:1–16.

    Article  Google Scholar 

  • Brookfield, M. E., 1977, The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology 24:303–32.

    Article  Google Scholar 

  • Cheel, R. J., 1990, Horizontal lamination and the sequence of bed phases and stratification under upper-flow-regime conditions. Sedimentology 37:517–29.

    Article  Google Scholar 

  • Clifton, H. E., 1976, Wave-formed sedimentary structures—a conceptual model. In R. A. Davis and R. L. Ethington (eds. ), Beach and Nearshore Sedimentation, Society for Sedimentary Geology Special Publication 24, Tulsa, Okla., pp. 126–48.

    Google Scholar 

  • Crowe, B. M., and R. V. Fisher, 1973, Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubebebe Craters, Death Valley, California. Geological Society of America Bulletin 84:663–82.

    Article  Google Scholar 

  • Dalrymple, R. W., 1984, Morphology and internal structure of sandwaves in the Bay of Fundy. Sedimentology 31:365–82.

    Article  Google Scholar 

  • Dott, R. H., Jr., and J. Bourgeois, 1982, Hummocky stratification: Significance of its variable bedding sequences. Geological Society of America Bulletin 93:663–80.

    Article  Google Scholar 

  • Dott, R. H., Jr., and M. A. Roshardt, 1972, Analysis of cross-stratification orientation in the St. Peter Sandstone in southwestern Wisconsin. Geological Society of America Bulletin 83:2589–96.

    Article  Google Scholar 

  • Duke, W. L., 1985, Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology 32:167–19. (Also see 1987 Discussions [by G. deV. Klein and K. M. Marsaglia; D. J. P. Swift, and D. Nummedal] and Replies in Sedimentology 34:333–51. )

    Google Scholar 

  • Dzulynski, S., and J. E. Sanders, 1962, Current marks on firm mud bottoms. Connecticut Academy of Science Transactions 42:57–96.

    Google Scholar 

  • Harms, J. C., 1969, Hydraulic significance of some sand ripples. Geological Society of America Bulletin 80:363–96.

    Article  Google Scholar 

  • Harms, J. C., and R. K. Fahnestock, 1965, Stratification, bed forms, and flow phenomena (with an example from the Rio Grande). In G. V. Middleton (ed. ), Primary Sedimentary Structures and Their Hydrodynamic Interpretation, Society for Sedimentary Geology Special Publication 12, Tulsa, Okla., pp. 84–115.

    Google Scholar 

  • Harms, J. C., J. B. Southard, D. R. Spearing, and R. G. Walker, 1975, Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences. Short Course 9, Society for Sedimentary Geology, Tulsa, Okla.

    Google Scholar 

  • Hunter, R. E., 1977, Basic types of stratification in small eolian dunes. Sedimentology 24:361–87.

    Article  Google Scholar 

  • Ingram, R. L., 1954, Terminology for the thickness of stratification and parting units in sedimentary rocks. Geological Society of America Bulletin 65:937–38.

    Article  Google Scholar 

  • Jones, B. G., and B. R. Rust, 1983, Massive sandstone facies in the Hawkesbury Sandstone, a Triassic fluvial deposit near Sydney, Australia. Journal of Sedimentary Petrology 53:1249–59.

    Google Scholar 

  • Jopling, A. V., 1966, Some applications of theory and experiment to the study of bedding genesis. Sedimentology 7:71–102.

    Article  Google Scholar 

  • Jopling, A. V., and R. G. Walker, 1968, Morphology and origin of ripple-drift cross-lamination, with examples from the Pleistocene of Massachusetts. Journal of Sedimentary Petrology 38:971–84.

    Google Scholar 

  • Kocurek, G., 1988, First-order and super bounding surfaces in eolian sequences—bounding surfaces revisited. Sedimentary Geology 56:193–206.

    Article  Google Scholar 

  • Kocurek, G., and R. H., Dott, Jr., 1981, Distinctions and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Petrology 51:579–95.

    Google Scholar 

  • Lindholm, R. L., 1981, Flat stratification: Two ancient examples. Journal of Sedimentary Petrology 52:227–31.

    Google Scholar 

  • McCabe, P. J., 1977, Deep distributory channels and giant bedforms in the Upper Carboniferous of the central Pennines, northern England. Sedimentology 24:271–90.

    Article  Google Scholar 

  • McKee, E. D., 1966, Structure of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology 7:1–70.

    Article  Google Scholar 

  • McKee, E. D., and G. W. Weir, 1953, Terminology for stratification and cross-stratification in sedimentary rocks. Geological Society of America Bulletin 64:381–90.

    Article  Google Scholar 

  • Meckel, L. D., 1967, Tabular and trough cross bedding: Comparison of dip azimuth variability. Journal of Sedimentary Petrology 37:80–6.

    Google Scholar 

  • Miall, A. D., 1974, Paleocurrent analysis of alluvial sediments: A discussion of directional variance and vector magnitude. Journal of Sedimentary Petrology 44:1174–85.

    Google Scholar 

  • Middleton, G. V. (ed. ), 1965, Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Society for Sedimentary Geology Special Publication 12, Tulsa, Okla., 265p.

    Google Scholar 

  • Middleton, G. V. (ed. ), 1977, Hydraulic Interpretation of Primary Sedimentary Structures. Society for Sedimentary Geology Reprint Series 4, Tulsa, Okla.

    Google Scholar 

  • Middleton, G. V., and J. B. Southard, 1984, Mechanics of Sediment Movement, 2d ed. Short Course 3, Society for Sedimentary Geology, Tulsa, Okla.

    Google Scholar 

  • Nelson, C. H., 1982, Modern shallow-water graded sand layers from storm surges, Bering Shelf: A mimic of Bouma sequences and turbidite systems. Journal of Sedimentary Petrology 52:537–45.

    Google Scholar 

  • Pettijohn, F. J., and P. E. Potter, 1964, Atlas and Glossary of Primary Sedimentary Structures. Springer-Verlag, New York, 370p.

    Book  Google Scholar 

  • Reddering, J. S. V., 1987, Subtidal occurrences of ladder-back ripples: Their significance in palaeo-environmental reconstruction. Sedimentology 34:253–7.

    Article  Google Scholar 

  • Reineck, H. -E., and F. Wunderlich, 1968, Classification and origin of flaser and lenticular bedding. Sedimentology 11: 99–104

    Article  Google Scholar 

  • Sharp, R. P., 1963, Wind ripples. Journal of Geology 71:617–36.

    Article  Google Scholar 

  • Southard, J. B., and L. A. Boguchwal, 1973, Flume experiments on the transition from ripples to lower flat bed with increasing sand size. Journal of Sedimentary Petrology 43:1114–21.

    Google Scholar 

  • Southard, J. B., and L. A. Boguchwal, 1990, Bed configurations in steady unidirectional water flows, Part 2. Synthesis of flume data Journal of Sedimentary Petrology 60:658–79.

    Google Scholar 

  • Tanner, W. F., 1967, Ripple mark indices and their uses. Sedimentology 9:89–104.

    Article  Google Scholar 

  • Thomas, G. S. P., and R. J. Connell, 1985, Iceberg drop, dump, and grounding structures from Pleistocene glacio-lacustrine sediments, Scotland. Journal of Sedimentary Petrology 55:243–9.

    Google Scholar 

  • Thomas, R. G., D. G. Smith, J. M. Wood, J. Visseer, E. A. Calverley-Range, and E. H. Koster, 1987, Inclined heterolithic stratification—terminology, description, interpretation and significance. Sedimentary Geology 53:123–79.

    Google Scholar 

  • Walker, R. G., 1967, Turbidite sedimentary structures and their relationship to proximal and distal depositional environments. Journal of Sedimentary Petrology 37:25–43.

    Google Scholar 

  • Wells, N. A., 1988, Working with paleocurrents. Journal of Geological Education 35:39–43.

    Google Scholar 

  • Arakel, A. V., and D. M. McConchie, 1982, Classification and genesis of calcrete and gypsite lithofacies in paleodrainage systems in inland Australia and their relationship to carnotite mineralization. Journal of Sedimentary Petrology 52:1149–70.

    Google Scholar 

  • Boles, J. R., C. A. Landis, and P. Dale, 1985, The Moeraki Boulders—anatomy of some septarian concretions. Journal of Sedimentary Petrology 55:398–406.

    Google Scholar 

  • Braunstein, J., and G. D. O’Brien (eds. ), 1968, Diapirism and Diapirs. American Association of Petroleum Geologists Memoir 8, Tulsa, Okla.

    Google Scholar 

  • Carl, J. D., and G. C. Amstutz, 1958, Three-dimensional Liesegang rings by diffusion in a colloidal matrix, and their significance for the interpretation of geological phenomena. Geological Society of America Bulletin 6:14–67.

    Google Scholar 

  • Diller, J. S., 1890, Sandstone dikes. Geological Society of America Bulletin 1:411–42

    Google Scholar 

  • Elliott, R. E., 1965, A classification of subaqueous sedimentary structures based on rheological and kinematical parameters. Sedimentology 5:193–209.

    Article  Google Scholar 

  • Gregory, M. R., 1968, Sedimentary features and penecontemporaneous slumping in the Waitemata Group, Whangaparaoa Peninsula, North Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 12:248–82.

    Article  Google Scholar 

  • Jones, M. E., and R. M. F. Preston, 1987, Deformation of Sediments and Sedimentary Rocks. Geological Society Special Publication 29, Blackwell Scientific Publications, Oxford, 350p.

    Google Scholar 

  • Kennedy, W. J., R. C. Lindholm, K. P. Helmold, and J. M. Hancock, 1977, Genesis and diagenesis of hiatus-and breccia-concretions from the mid-Cretaceous of Texas and northern Mexico. Sedimentology 24:833–44.

    Article  Google Scholar 

  • Laird, M. G., 1968, Rotational slumps and slump scars in Silurian rocks, western Ireland. Sedimentology 10:111–20.

    Article  Google Scholar 

  • Laird, M. G., 1970, Vertical sheet structure—a new indicator of sedi-mentary fabric. Journal of Sedimentary Petrology 40:428–34.

    Google Scholar 

  • Lajoie, J., 1972, Slump fold axis orientations: An indication of paleoslope? Journal of Sedimentary Petrology 42:584–6.

    Google Scholar 

  • Lewis, D. W., 1973, Polyphase limestone dikes in the Oamaru region, New Zealand. Journal of Sedimentary Petrology 43:1031–45.

    Google Scholar 

  • Lewis, D. W., D. Smale, and G. J. van der Lingen, 1979, A sandstone diapir cutting the Amuri Limestone, North Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 22:295–305.

    Article  Google Scholar 

  • Lowe, D. R., 1975, Water escape structures in coarse-grained sediments. Sedimentology 22:157–204.

    Article  Google Scholar 

  • Lowe, D. R., and R. D. LoPiccolo, 1974, The characteristics and origins of dish and pillar structures. Journal of Sedimentary Petrology 44:484–501.

    Google Scholar 

  • McClay, K. R., 1977, Pressure solution and Coble creep in rocks and minerals: A review. Journal of the Geological Society 134:57–70.

    Article  Google Scholar 

  • McConchie, D. M., 1987, The geology and the geochemistry of the Joffre and Whaleback Shale Members of the Brockman Iron Formation, Western Australia. In P. Appel and G. LaBerge (eds. ), Precambrian Iron Formations. Theophrastus Publications, Athens, pp. 541–601.

    Google Scholar 

  • McKee, E. D., and M. Goldberg, 1969, Experiments on formation of contorted structures in mud. Geological Society of America Bulletin 80:231–44.

    Article  Google Scholar 

  • Mills, P. C., 1983, Genesis and diagnostic value of soft-sediment defor-mation structures—a review. Sedimentary Geology 35:83–104.

    Article  Google Scholar 

  • Morris, R. C., 1971, Classification and interpretation of disturbed bedding types in Jackfork flysch rocks (Upper Mississippian), Ouachita Mountains, Arkansas. Journal of Sedimentary Petrology 41:410–24.

    Google Scholar 

  • Moussa, M. T., 1974, Rain-drop impressions? Journal of Sedimentary Petrology 44:1118–21.

    Google Scholar 

  • Park, W. C., and E. H. Schot, 1968, Stylolites: Their nature and origin. Journal of Sedimentary Petrology 38:175–91.

    Google Scholar 

  • Peterson, G. L., 1968, Flow structures in sandstone dikes. Sedimentary Geology 2:177–90.

    Article  Google Scholar 

  • Plummer, P. S., and V. A. Gostin, 1981, Shrinkage cracks: Desicca-tion or syneresis. Journal of Sedimentary Petrology 51:1147–56.

    Google Scholar 

  • Raiswell, R., 1971, The growth of Cambrian and Liassic concre-tions. Sedimentology 17:147–71.

    Article  Google Scholar 

  • Ramberg, H., 1955, Natural and experimental boudinage and pinch and swell structures. Journal of Geology 63:512–26.

    Article  Google Scholar 

  • Sanders, J. E., 1960, Origin of convolute lamination. Geological Magazine 97:408–21.

    Article  Google Scholar 

  • Selley, R. C., and D. J. Shearman, 1962, Experimental production of sedimentary structures in quicksands. Geological Society of America Proceedings 1599:101–2.

    Google Scholar 

  • Simpson, J., 1985, Stylolite-controlled layering in a homogeneous limestone: Pseudo-bedding produced by burial diagenesis. Sedimentology 32:495–505.

    Article  Google Scholar 

  • Strakhov, N. M., 1967–70, Principles of Lithogenesis. Oliver & Boyd, Edinburgh, 3 vols. (1, 1967; 2, 1969; 3, 1970).

    Google Scholar 

  • Swarbrick, E. E., 1968, Physical diagenesis: Intrusive sediment and connate water. Sedimentary Geology 2:161–75.

    Article  Google Scholar 

  • Thomson, A., 1973, Soft-sediment faults in the Tesnus Formation and their relationship to paleoslope. Journal of Sedimentary Petrology 43:525–8.

    Google Scholar 

  • Trendall, A. F., and J. G. Blockley, 1970, The Iron Formations of the Precambrian Hamersley Group, Western Australia, with Special Reference to the Associated Crocidolite. Geological Survey of Western Australia Bulletin 119,366p.

    Google Scholar 

  • Woodcock, N. H., 1979, The use of slump structures as palaeoslope orientation estimators. Sedimentology 26:83–99.

    Article  Google Scholar 

  • Anon., 1991, Ichnofabric and Ichnofacies. Palaios (Special Issue) 6(3):197–343.

    Article  Google Scholar 

  • Basan, P. B. (ed. ), 1978, Trace Fossil Concepts. Short Course 5, Society for Sedimentary Geology, Tulsa, Okla., 201p.

    Google Scholar 

  • Bromley, R. G., 1991, Trace Fossils, Biology and Taphonomy. Unwin Hyman, London, 280p.

    Google Scholar 

  • Bromley, R. G., and A. A. Ekdale, 1986, Composite ichnofacies and tiering of burrows. Geological Magazine 123:59–69.

    Article  Google Scholar 

  • Budd, D. A., and R. D. Perkins, 1980, Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. Journal of Sedimentary Petrology 50:881–904.

    Google Scholar 

  • Buick, R., J. S. R. Dunlop, and D. I. Groves, 1981, Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an early Archaean chert-barite unit from North Pole, Western Australia. A lcheringa 5:161–81.

    Article  Google Scholar 

  • Burne, R. V., and L. S. Moore, 1987, Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2:241–54.

    Article  Google Scholar 

  • Burne, R. V., and L. S. Moore, 1988. The ecological and environmental settings of modern microbialites: Significance for the interpretation of ancient examples. Terra Cognita 8:225.

    Google Scholar 

  • Carriker, M. R., L. H. Smith, and E. T. Wilce (eds. ), 1969, Penetration of calcium carbonate substrates by lower plants and invertebrates. American Zoologist 9:629–1020.

    Google Scholar 

  • Chamberlain, C. K., 1971, Bathymetry and paleoecology of Ouachita geosyncline of southeastern Oklahoma as determined from trace fossils. American Association of Petroleum Geologists Bulletin 55:34–50.

    Google Scholar 

  • Clifton, H. E., and R. E. Hunter, 1973, Bioturbational rates and effects in carbonate sand, St. John, U. S. Virgin Islands. Journal of Geology 81:253–68.

    Article  Google Scholar 

  • Cornish, F. G., 1986, The trace-fossil Diplocraterion: Evidence of animal—sediment interactions in Cambrian tidal deposits. Palaios 1:478–91.

    Article  Google Scholar 

  • Crimes, T. P., 1977, Modular construction of deep water trace fossils from the Cretaceous of Spain. Journal of Paleontology 51:591–605.

    Google Scholar 

  • Crimes, T. P., and J. C. Harper (eds. ), 1971, Trace Fossils. Geological Journal Special Issue 3, Liverpool, England, 547p.

    Google Scholar 

  • Crimes, T. P., and J. C. Harper (eds. ), 1977, Trace Fossils 2. Geo-logical Journal Special Issue 9, Liverpool, England, 351p.

    Google Scholar 

  • Droser, M. L., and D. J. Bottjer, 1986, A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology 56: 558–9.

    Google Scholar 

  • Ekdale, A. A. (ed. ), 1978, Trace fossils and their importance in paleoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 23:167–373.

    Article  Google Scholar 

  • Ekdale, A. A., 1988, Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. Palaios 3:464–72.

    Article  Google Scholar 

  • Ekdale, A. A., and D. W. Lewis, 1991a, Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 81:253–79.

    Article  Google Scholar 

  • Ekdale, A. A., and D. W. Lewis, 1991b, The New Zealand Zoophycos revisited: Morphology, ethology and paleoecology. Ichnos 1:183–94.

    Article  Google Scholar 

  • Frey, R. W., 1973, Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Petrology 43:6–19.

    Google Scholar 

  • Frey, R. W. (ed. ), 1975, The Study of Trace Fossils. Springer-Verlag, New York, 562p.

    Book  Google Scholar 

  • Frey, R. W., J. D. Howard, and W. A. Pryor, 1978, Ophiomorpha: Its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 19:199–229.

    Article  Google Scholar 

  • Hantzschel, W., 1975, Trace Fossils and Problematica, 2d ed. Treatise on Invertebrate Paleontology, Part W. Miscellanea, Supplement I., C. Teicher (ed. ). Geological Society of America and University of Kansas, Boulder, Colo., and Lawrence, Kans., 269p.

    Google Scholar 

  • Hantzschel, W., F. el-Baz, and G. C. Amstutz, 1969, Coprolites, an Annotated Bibliography. Geological Society of America Memoir 108, Washington, D. C., 132p.

    Google Scholar 

  • Hofmann, H. J., 1973, Stromatolites: Characteristics and utility. Earth-Science Reviews 9:339–73.

    Article  Google Scholar 

  • Lewis, D. W., 1992, Anatomy of an unconformity on mid-Oligocene Amuri Limestone, Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 35:463–75.

    Article  Google Scholar 

  • Lewis, D. W., and A. A. Ekdale, 1992, Composite ichnofabric of a mid-Tertiary unconformity on pelagic Oligocene Amuri Limestone, Canterbury, New Zealand. Palaios 7:222–35.

    Article  Google Scholar 

  • Logan, B. W., R. Rezak, and R. N. Ginsburg, 1964, Classification and environmental significance of stromatolites. Journal of Geology 72:68–83.

    Article  Google Scholar 

  • Logan, B. W., G. R. Davies, J. F. Read, and D. E. Cebulski, 1970, Carbonate Sedimentation and Environments, Shark Bay, Western Australia. American Association of Petroleum Geologists Memoir 13, Tulsa, Okla., 232p.

    Google Scholar 

  • McCall, P. L., and M. J. S. Tevesz, 1982, Animal—Sediment Relations: The Biogenic Alteration of Sediments. Plenum Press, New York, 336p.

    Google Scholar 

  • Meldahl, K. H., 1987, Sedimentologic and taphonomic implications of biogenic stratification. Palaios 2:350–8.

    Article  Google Scholar 

  • Miller, M. F., A. A. Ekdale, and M. D. Picard (eds. ), 1984, Trace Fossils and Paleoenvironments: Marine Carbonate, Marginal Marine Terrigenous and Continental Terrigenous Settings. Journal of Paleontology (Special Issue) 58:283–597.

    Google Scholar 

  • Monty, C. L. (ed. ), 1981. Phanerozoic Stromatolites. Springer-Verlag, Berlin.

    Google Scholar 

  • Pryor, W. A., 1975. Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. Geological Society of America Bulletin 86:1244–54.

    Article  Google Scholar 

  • Seilacher, A., 1964, Biogenic sedimentary structures. In J. Imbrie and N. Newall (eds. ), Approaches to Paleoecology, Wiley, New York, pp. 296–316.

    Google Scholar 

  • Seilacher, A., 1967, Bathymetry of trace fossils. Marine Geology 5:413–28.

    Article  Google Scholar 

  • Walter, M. R., R. Buick, and J. S. R. Dunlop, 1980, Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–5.

    Article  Google Scholar 

  • Ward, D. M., and D. W. Lewis, 1975, Paleoenvironmental implications of storm-scoured, ichnofossiliferous mid-Tertiary limestones, Waihao District, South Canterbury. New Zealand Journal of Geology and Geophysics 18:881–908.

    Article  Google Scholar 

  • Wetzel, A., 1991, Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, Palaeoclimatology, Palaeoecology 85:47–69.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lewis, D.W., McConchie, D. (1994). Sedimentary Structures. In: Practical Sedimentology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2634-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2634-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6130-5

  • Online ISBN: 978-1-4615-2634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics