Skip to main content

Role of gene amplification in drug resistance

  • Chapter
Book cover Anticancer Drug Resistance

Part of the book series: Cancer Treatment and Research ((CTAR,volume 73))

Abstract

The drug-resistant phenotype is prevalent in many human cancers. In particular, multidrug resistance, in which cells are simultaneously resistant to several classes of anticancer agents, poses a major obstacle in the treatment of cancer. One strategy to elucidate drug resistance mechanisms operative in cancer cells is to independently derive drug resistant cell lines in vitro that mimic the drug resistance patterns observed in vivo. Drug-resistant mammalian cells selected in vitro may have highly amplified genomic sequences that encode large amounts of target proteins or large amounts of the detoxifying systems for a variety of cytotoxic agents [1,2]. These drug-resistant cell lines are particularly useful for the genetic, biochemical, and molecular analysis of drug resistance mechanisms because they provide excellent starting materials for the cloning of the respective drug resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stark, G.R., Debatisse, M., Giulotto, E., and Wahl, G.M. 1989. Recent progress in understanding mechanisms of mammalian DNA amplification. Cell 57: 901–908.

    PubMed  CAS  Google Scholar 

  2. Schimke, R.T. 1988. Gene amplification in cultured cells. J. Biol. Chem. 263: 5989–5992.

    PubMed  CAS  Google Scholar 

  3. Tlsty, T.D., Margolin, B.H., and Lum, K. 1989. Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbruck fluctuation analysis. Proc. Natl. Acad. Sci. USA 86: 9441–9445.

    PubMed  CAS  Google Scholar 

  4. Tlsty, T.D. 1990. Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc. Natl. Acad. Sci. 87: 3123–3136.

    Google Scholar 

  5. Wright, J.A., Smith, H.S., Watt, F.M., Hancock, C., Hudson, D.L., and Stark, G.R. 1990. DNA amplification is rare in normal human cells. Proc. Natl. Acad. Sci. USA 87: 1791–1795.

    PubMed  CAS  Google Scholar 

  6. Lee, W.H., Murphree, A.L., and Benedict, W.F. 1984. Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 309: 458–460.

    PubMed  CAS  Google Scholar 

  7. Liberman, T.A., Nusbaum, H.R., Razon, N., Kris, R., Lax, I., Soreq, H., Whittle, N., Waterfield, M.D., Ullrich, A., Schlessinger, J. 1985. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313: 144–147.

    Google Scholar 

  8. Nau, M.M., Brooks, BJ. Jr., Carney, D.N., Gazdar, A.F., Battey, J.F., Sausville, E.A., and Minna, J.D. 1986. Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc. Natl. Acad. Sci. USA 83: 1092–1096.

    PubMed  CAS  Google Scholar 

  9. Wong, A.J., Ruppert, J.M., Eggleston, J., Hamiltion, S.R., Baylin, S.B., and Vogelstein, B. 1986. Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 233: 461–464.

    PubMed  CAS  Google Scholar 

  10. Wong, A.J., Bigner, S.H., Bigner, D.D., Kinzler, K.W., Hamiltion, S.R., and Vogelstein, B. 1987. Increased expression of the EGF receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl. Acad. Sci. USA 84: 6899–6903.

    PubMed  CAS  Google Scholar 

  11. Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E., and Bishop, J.M. 1984. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124.

    PubMed  CAS  Google Scholar 

  12. Seeger, R.C., Brodeur, G.M., Sather, H., Dalton, A., Siegel, S.E., Wong, K.Y., and Hammond, D. 1985. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313: 1111–1116.

    PubMed  CAS  Google Scholar 

  13. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L. 1987. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    PubMed  CAS  Google Scholar 

  14. Yunis, J.J. 1983. The chromosomal basis of human neoplasia. Science 221: 227–235.

    PubMed  CAS  Google Scholar 

  15. Bishop, M.J. Molecular genetics of cancer. 1987. Science 235: 305–311.

    PubMed  CAS  Google Scholar 

  16. Schimke, R.T., Sherwood, S.W., Holl, A.B., and Johnston, R.N. 1986. Over-replication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc. Natl. Acad. Sci. USA 83: 2157–2161.

    PubMed  CAS  Google Scholar 

  17. Wahl, G.M. 1989. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49: 1333–1340.

    PubMed  CAS  Google Scholar 

  18. Livingstone, L.R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T.D. 1992. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935.

    PubMed  CAS  Google Scholar 

  19. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C., and Wahl, G.M. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948.

    PubMed  CAS  Google Scholar 

  20. Lane, D.P. and Benchimol, S. 1990. p53: oncogene or anti-oncogene? Genes Dev. 4: 1–8.

    PubMed  CAS  Google Scholar 

  21. Levine, A.J., Momand, J., and Fiinlay, C.A. 1991. The p53 tumour suppressor gene. Nature 351: 453–456.

    PubMed  CAS  Google Scholar 

  22. Stark, G.R. and Wahl, G.M. 1984. Gene amplification. Annu. Rev. Biochem. 53: 447–491.

    PubMed  CAS  Google Scholar 

  23. Hamlin, J.L., Milbrandt, J.D., Heintz, N.H., and Azizkhan, J.C. 1984. DNA sequence amplification in mammalian cells. Int. Rev. Cytol. 90: 31–82.

    PubMed  CAS  Google Scholar 

  24. Smith, K.A., Gorman, P.A., Stark, M.B., Groves, R.P., and Stark, G.R. 1990. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell 63: 1219–1227.

    PubMed  CAS  Google Scholar 

  25. Biedier, J.L. and Spengler, B.A. 1976. Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science 191: 185–187.

    Google Scholar 

  26. Biedler, J.L., Melera, P.W., and Spengler, B.A. 1980. Specifically altered metaphase chromosomes in antifolate-resistant Chinese hamster cells that overproduce dihydrofolate reductase. Cancer Genet. Cytogenet. 2: 47–60.

    Google Scholar 

  27. Kaufman, R.J., Brown, P.C., and Schimke, R.T. 1979. Amplified dihydrofolate reductase genes in unstable methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl. Acad. Sci. USA 76: 5669–5673.

    PubMed  CAS  Google Scholar 

  28. Maurer, B.J., Lai, E., Hamkalo, B.A., Hood, L., Attardi, G. 1987. Novel submicroscopic extrachromosomal elements containing amplified genes in human cells. Nature 327: 434–437.

    PubMed  CAS  Google Scholar 

  29. Carroll, S.M., Gaudray, P., De Rose, M.L., Emery, J.F., Meinkoth, J.L., Nakkim, E., Subler, M., Von Hoff, D.D., and Wahl, G.M. 1987. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Mol. Cell. Biol. 7: 1740–1750.

    PubMed  CAS  Google Scholar 

  30. Von Hoff, D.D., Needham-Van Devanter, D.R., Yucel, J., Windle, B.E., and Wahl, G.M. 1988. Amplified human c-myc oncogenes localized to replicating submicroscopic circular DNA molecules. Proc. Natl. Acad. Sci. USA 85: 4804–4808.

    Google Scholar 

  31. Pauletti, G., Lai, E., and Attardi, G. 1990. Early appearance and long-term persistence of the submicroscopic extrachromosomal elements (amplisomes) containing the amplified DHFR genes in human cell lines. Proc. Natl. Acad. Sci. USA 87: 2955–2959.

    PubMed  CAS  Google Scholar 

  32. Barker, P.E. and Stubblefield, E. 1979. Ultrastructure of double minutes from a human tumor cell line. J. Cell. Biol. 83: 663–666.

    PubMed  CAS  Google Scholar 

  33. Ruiz, J.C., Choi, K., Von Hoff, D.D., Roninson, LB., and Wahl, G.M. 1989. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol. Cell. Biol. 9: 109–115.

    PubMed  CAS  Google Scholar 

  34. Trask, B.J., Hamlin, J.L. 1989. Early dihydrofolate reductase gene amplification events in CHO cells usually occur on the same chromosome arm as the original locus. Genes Dev. 3: 1913–1925.

    PubMed  CAS  Google Scholar 

  35. Smith, K.A., Gorman, P.A., Stark, M.B., Groves, R.P., and Stark, G.R. 1990. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian Hamster Cells. Cell 63: 1219–1227.

    PubMed  CAS  Google Scholar 

  36. Ma, C., Martin, S., Trask, B.J., and Hamlin, J.L. 1993. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev. 7: 605–620.

    PubMed  CAS  Google Scholar 

  37. Ardeshir, F., Giulotto, E., Zieg, J., Brison, O., Liao, W.S.L., and Stark, G. 1983. Structure of amplified DNA in different Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate. Mol. Cell. Biol. 3: 2026–2088.

    Google Scholar 

  38. Caizzi, R. and Bostock, C.J. 1982. Gene amplification in methotrexate-resistant mouse cells. Different DNA sequences are amplified in different resistant cell lines. Nucleic Acids Res. 10: 6597–6613.

    PubMed  CAS  Google Scholar 

  39. Federspiel, N.A., Beverley, S.M., Schilling, J.W., and Schimke, R.T. 1984. Novel DNA rearrangements are associated with dihydrofolate reductase gene amplification. J. Biol. Chem. 259: 9127–9140.

    PubMed  CAS  Google Scholar 

  40. Giulotto, E., Saito, I., and Stark, G.R. 1986. Structure of DNA formed in the first step of CAD gene amplification. EMBO J. 5: 2115–2121.

    PubMed  CAS  Google Scholar 

  41. Looney, J.E. and Hamlin, J.L. 1987. Isolation of the amplified dihydrofolate reductase domain from methotrexate-resistant Chinese hamster ovary cells. Mol. Cell. Biol. 7: 569–577.

    PubMed  CAS  Google Scholar 

  42. Montoya-Zavala, M. and Hamlin, J.L. 1985. Similar 150-kilobase DNA sequences are amplified in independently derived methotrexate-resistant Chinese hamster cells. Mol. Cell. Biol. 5: 619–627.

    PubMed  CAS  Google Scholar 

  43. Zehnbauer, B.A., Small, D., Brodeur, G.M., Seeger, R., and Vogelstein, B. 1988. Characterization of N-myc amplification units in human neuroblastoma cells. Mol. Cell. Biol. 8: 522–530.

    PubMed  CAS  Google Scholar 

  44. Schoenlein, P.V., Shen, D.-W., Barrett, J.T., Pastan, I., and Gottesman, M.M. 1992. Double minute chromosomes carrying the human MDR1 and MDR2 genes are generated from the dimerization of submicroscopic circular DNAs in colchicine-selected KB carcinoma cells. Mol. Biol. Cell. 3: 507–522.

    PubMed  CAS  Google Scholar 

  45. Benner, S.E., Wahl, G.M., and Von Hoff, D.D. 1991. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anti-Cancer Drugs 2: 11–25.

    PubMed  CAS  Google Scholar 

  46. Van Devanter, D.R., Piaskowski, V.D., Casper, J.T., Douglass, E.C., and Von Hoff, D.D. 1990. Ability of circular extrachromosomal DNA molecules to carry amplified MYCN protooncogenes in human neuroblastomas in vivo. J. Natl. Canc. Inst. 82: 1815–1821.

    Google Scholar 

  47. Smith, C.L., Lawrance, S.K., Gillespie, G.A., Cantor, C.R., Weissman, S.M., Collins, F.S. 1987. Strategies for mapping and cloning macroregions of mammalian genomes. In Methods in Enzymology, edited by M.M. Gottesman, 151: 461–489.

    Google Scholar 

  48. Carroll, S.M., De Rose, M.L., Gaudray, P., Moore, C.M., Needham-Van Devanter, D.R., Von Hoff, D.D., Wahl, G.M. 1988. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8: 1525–1533.

    PubMed  CAS  Google Scholar 

  49. Hunt, J.D., Valentine, M., and Tereba, A. 1990. Excision of N-myc from chromosome 2 in human neuroblastoma cells containing amplified N-myc sequences. Mol. Cell Biol. 10: 823–829.

    PubMed  CAS  Google Scholar 

  50. Heard, E.S., Williams, V., Sheer, D., and Fried, M. 1991. Gene amplification accompanied by the loss of a chromosome containing the native allele and the appearance of the amplified DNA at a new chromosomal location. Proc. Natl. Acad. Sci. USA 88: 8242–8246.

    PubMed  CAS  Google Scholar 

  51. Von Hoff, D.D., Forseth, B., Clare, C.N., Hansen, K.L., and VanDe Vanter, D. 1990. Double minutes arise from circular extrachromosomal sites in human HL-60 leukemia cells. J. Clin. Invest. 85: 1887–1895.

    Google Scholar 

  52. Sen, S., Hittelman, W.N., Teeter, L.D., and Kuo, M.T. 1989. Model for the formation of double minutes from prematurely condensed chromosomes of replicating micronuclei in drug-treated Chinese hamster ovary cells undergoing DNA amplification. Cancer Res. 49: 6731–6737.

    PubMed  CAS  Google Scholar 

  53. Biedler, J.L. 1982. Evidence for transient existence of amplified DNA sequences in antifolate-resistant, vincristine resistant, and human neuroblastoma cells. In Gene Amplification, edited by R.T. Schimke. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, pp. 39–45.

    Google Scholar 

  54. Ruiz, J.C. and Wahl, G.M. 1990. Chromosomal destabilization during gene amplification. Mol. Cell. Biol. 10: 3056–3066.

    PubMed  CAS  Google Scholar 

  55. Windle, B., Draper, B.W., Yin, Y., O’Gorman, S., and Wahl, G.M. 1991. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 5: 160–174.

    PubMed  CAS  Google Scholar 

  56. Kontis, K.J. and Arfin, S.M. 1989. Isolation of a cDNA clone for human threonyl-tRNA synthetase: Amplification of the structural gene in borrelidin-resistant cell lines. Mol. Cell. Biol. 9: 1832–1838.

    PubMed  CAS  Google Scholar 

  57. Ash, J.F., Fineman, R.M., Kalka, T., Morgan, M., and Wire, B. 1984. Amplification of sodium-and potassium-activated adenosinetriphosphatase in HeLa cells by ouabain step selection. J. Cell. Biol. 99: 971–983.

    PubMed  CAS  Google Scholar 

  58. Andrulis, I.L., Argonza, R., and Cairney, A.E.L. 1990. Molecular and genetic characterization of human cell lines resistant to L-asparaginase and albizziin. Somat. Cell. Mol. Genet. 16: 59–65.

    CAS  Google Scholar 

  59. McConlogue, L., Gupta, M., Wu, L., and Coffino, P. 1984. Molecular cloning and expression of the mouse ornithine decarboxylase gene. Proc. Natl. Acad. Sci. USA 81: 540–544.

    PubMed  CAS  Google Scholar 

  60. Collart, F.R. and Huberman, E. 1987. Amplification of the IMP dehydrogenase gene in Chinese hamster cells resistant to mycophenolic acid Mol. Cell. Biol. 7: 3328–3331.

    CAS  Google Scholar 

  61. Debatisse, M., Vincent, B.R., and Buttin, G. 1984. Expression of several amplified genes in an adenylate-deaminase over-producing variant of Chinese hamster fibroblasts. EMBO J.: 3123–3124.

    Google Scholar 

  62. Yeung, C.-Y., Frayne, E.G., A1-Ubaidi, MR., Hook, A.G., Ingolia, D.E., Wright, D.A., and Kellems, R.E. 1983. Amplification and molecular cloning of murine adenosine deaminase gene sequences. J. Biol. Chem. 258: 15179–15185.

    PubMed  CAS  Google Scholar 

  63. Beach, L.R. and Palmiter, R.D. 1982. Amplification of the metallothionein in cadmium and zinc resistant Chinese hamster ovary cells. J. Biol. Chem. 257: 9049–9053.

    Google Scholar 

  64. Brennard, J., Chinault, A.C., Konecki, D.S., Melton, D.W., and Caskey, C.T. 1982. Cloned cDNA sequences of the hypoxanthine phosphoribosyl transferase gene from a mouse neuroblastoma cell line found to have amplified genomic sequences. Proc. Natl. Acad. Sci. USA 79: 1950–1954.

    Google Scholar 

  65. Scocca, J., Hartog, K.O., and Kragg, S.S. 1988. Evidence of gene amplification in tunicamycin-resistant Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 156: 1063–1069.

    PubMed  CAS  Google Scholar 

  66. Kanalos, J.J. and Suttle, D.P. Amplification of the cAMP sythase gene and enzyme overproduction in pyrazofurin-resistant rat hepatoma cells. J. Biol. Chem. 259: 1848–1853.

    Google Scholar 

  67. Tsui, F.W.L., Andrulis, I.L., Murialdo, H., and Siminovitch, L. 1985. Amplification of the gene for histidyl-tRNA synthetase in histidinol-resistant Chinese hamster ovary cells. Mol. Cell Biol. 5: 2381–2388.

    PubMed  CAS  Google Scholar 

  68. Young, A.P. and Ringold, G.M. 1983. Mouse 3T6 cells that overproduce glutamine synthetase. J. Biol. Chem. 258: 11260–11266.

    PubMed  CAS  Google Scholar 

  69. Sanders, P.G. and Wilson, R.H. 1984. Amplification and cloning of the Chinese hamster glutamine synthetase gene. EMBO J. 3: 65–71.

    PubMed  CAS  Google Scholar 

  70. Chin, D.J., Luskey, K.L., Anderson, R.G.W., Faust, J.R., Goldstein, J.L., and Brown. 1982. Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methylglutary 1-coenzyme A reductase. Proc. Natl. Acad. Sci. USA 79: 1185–1189.

    PubMed  CAS  Google Scholar 

  71. Skalnik, D.G., Brown, D.B., Brown, P.C., Friedman, R.L., Hardeman, E.C., Schimke, R.T., and Simoni, R.D. 1985. Mechanism of 3-hydroxy-3-methylglutaryl Coenzyme A reductase overaccumulation in three compactin-resistant cell lines. J. Biol. Chem. 260: 1991–1994.

    PubMed  CAS  Google Scholar 

  72. Alt, F.W., Kellems, R.E., Bertino, T.R., and Schimke, R.T. 1978. Selective multiplication of the dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J. Biol. Chem. 253: 1357–1370.

    PubMed  CAS  Google Scholar 

  73. Melera, P.W., Lewis, J.A., Biedler, J.L., and Hession, C.A. 1980. Antifolate resistant Chinese hamster cells. II. Evidence for dihydrofolate reductase gene amplification among independently derived sublines overproducing different dihydrofolate reductases. J. Biol. Chem. 255: 7024–7028.

    PubMed  CAS  Google Scholar 

  74. Milbrandt, J.D., Heintz, J.H., Whilte, W.C., Rothman, S.M., and Hamlin J.L. 1981. Methotrexate-resistant Chinese hamster ovary cells have amplified a 135-kilobase-pair region that includes the dihydrofolate reductase gene. Proc. Natl. Acad. Sci. USA 78: 6043–6047.

    PubMed  CAS  Google Scholar 

  75. Geyer, P.K. and Johnson, L.F. 1984. Molecular cloning of DNA sequences complementary to mouse thymidylate synthase messenger RNA. J. Biol. Chem. 259: 7206–7211.

    PubMed  CAS  Google Scholar 

  76. Jenh, C.-H., Geyer, P.K., Baskin, F., and Johnson, L.F. 1985. Theymidylate synthase gene amplification in fluorodeoxyciridine-resistant mouse cell lines. Mol. Pharmocol. 28: 80–85.

    CAS  Google Scholar 

  77. Akerlom, L., Ehrenberg, A., Graslund, A., Lankinen, H., Reichard, P., and Thelander, L. 1981. Overproduction of the free radical of ribonucleotide reductase in hydroxyurea-resistant mouse fibroblast 3T6 cells. Proc. Natl. Acad. Sci. USA 78: 2159–2163.

    Google Scholar 

  78. Riordan, J.R. and Ling, V. 1985. Genetic and biochemical characterization of multidrug resistance. Pharmacol. Ther. 28: 51–75.

    CAS  Google Scholar 

  79. Riordan, J.R., Duechars, K., Kartner, N., Alon, N., Trent, J., and Ling, V. 1985. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316: 817–819.

    PubMed  CAS  Google Scholar 

  80. Roninson, I.B., Abelson, H.T., Housman, D.E., Howell, N., and Varshavsky, A. 1984. Amplification of specific DNA sequences correlates with multidrug resistance in Chinese hamster cells. Nature 309: 626–638.

    PubMed  CAS  Google Scholar 

  81. Fojo, A.T., Whang-Peng, J., Gottesman, M.M., and Pastan, I. 1985. Amplification of DNA sequences in human multidrug-resistant KB carcinoma cells. Proc. Natl. Acad. Sci., USA 82: 7661–7665.

    PubMed  CAS  Google Scholar 

  82. Shen, D.-W., Fojo, A., Chin, J.E., Roninson, LB., Richert, N., Pastan, I., and Gottesman, M.M. 1986. Human multidrug resistant cell lines: increased mdr1 expression can proceed gene amplification. Science 232: 643–645.

    PubMed  CAS  Google Scholar 

  83. Van der Bliek, A.M., Van der Velde-Koerts, T., Ling, V., and Borst, P. 1986. Overexpression and amplification of five genes in a multidrug-resistant Chinese hamster ovary cell line. Mol. Cell. Biol. 6: 1671–1678.

    PubMed  Google Scholar 

  84. Scotto, K.W., Biedler, J.L., and Melera, P.W. 1986. Amplification and expression of genes associated with multidrug resistance in mammalian cells. Science 232: 751–755.

    PubMed  CAS  Google Scholar 

  85. Wahl, G.M., Padgett, R.A., and Stark, G.R. 1979. Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N-(phosphonacetyl)-L-aspartate-resistant hamster cells. J. Biol. Chem. 254: 8679–8689.

    PubMed  CAS  Google Scholar 

  86. Kellems, R.E. 1993. Gene Amplification in Mammalian Cells. Marcel Dekker: New York.

    Google Scholar 

  87. Carman, M.D., Schornagel, J.H., Rivest, R.S., Srimatkandada, S., Portlock, C.S., Duffy, T., and Bertino, J.R. 1984. Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J. Clin. Oncol. 2: 16–20.

    PubMed  CAS  Google Scholar 

  88. Horns, Jr., R.C., Dower, W.J., and Schimke, R.T. 1984. Gene amplification in a leukemic patient treated with methotrexate. J. Clin. Oncol. 2: 2–7.

    PubMed  Google Scholar 

  89. Trent, J.M., Buick, R.N., Olson, S., Horns, R.C. Jr., and Schimke, R.T. 1984. Cytologic evidence for gene amplification in methotrexate-resistant cells obtained from a patient with ovarian adenocarcinoma. J. Clin. Oncol. 2: 8–15.

    PubMed  CAS  Google Scholar 

  90. Schweitzer, B.I., Dicker, A.P., and Bertino, J.R. 1990. Dihydrofolate reductase as a therapeutic target. FASEB J. 4: 2441–2452.

    PubMed  CAS  Google Scholar 

  91. Navalgund, L.G., Rossana, C., Muench, A.J., and Johnson, L.F. 1980. Cell cycle regulation of thymidylate synthetase gene expression in cultured mouse fibroblasts. J. Biol. Chem. 255: 7386–7390.

    PubMed  CAS  Google Scholar 

  92. Clark, J.L., Berger, S.H., Mittelman, A., and Berger, F.G. 1987. Thymidylate synthase gene amplification in a colon tumor resistant to fluoropyrimidine chemotherapy. Cancer Treatment Rep. 71: 261–265.

    CAS  Google Scholar 

  93. Graslund, A., Ehrenberg, A., and Thelander, L. 1982. Characterization of the free radical of mammalian ribonucleotide reductase. J. Biol. Chem. 257: 5711–5715.

    PubMed  CAS  Google Scholar 

  94. Wittes, R.E., Leyland-Jones, B., Fortner, C., and Hubbard, S.M. 1989. Chemotherapy: The properties and uses of single agents. In: Manual of Oncologic Therapeutics, edited by R.E. Wittes. J.B. Lippincott: Philadelphia, pp. 157–158.

    Google Scholar 

  95. Snapka, R.M. and Varshavsky, A. 1983. Loss of unstably amplified dihydrofolate reductase genes from mouse cells is greatly accelerated by hydroxyurea. Proc. Natl. Acad. Sci. USA 80: 7533–7537.

    PubMed  CAS  Google Scholar 

  96. Von Hoff, D.D., Van Devanter, D., Davidson, K., Waddelow, T., and Wahl, G. 1990. Hydroxyurea can decrease drug resistance gene copy numbers in tumor cell lines. Proc. Am. Assoc. Cancer Res. 31: 378.

    Google Scholar 

  97. Von Hoff, D.D., Forseth, B.J., Bradley, T., and Wahl, G. 1990. Hydroxyurea can decrease oncogene copy number in human tumor cell line. Proc. Am. Soc. Clin. Oncol. 9: 55.

    Google Scholar 

  98. Christen, R.D., Shalinsky, D.R., and Owell, S.B. 1990. Hydroxyurea (HU) accelerates the rate and loss of resistance to vinblastine (VBL) in KBV1 cells, but does not change the sensitivity to cis-platin in cis-platin resistant human ovarian carcinoma cells. Proc. Am. Soc. Clin. Oncol. 9: 55.

    Google Scholar 

  99. Von Hoff, D.D., Waddelow, T., Forseth B., Davidson K., Scott, J., and Wahl, G. 1991. Hydroxyurea accelerates loss of extrachromosomally amplified genes from tumor cells. Cancer Res. 51: 6273–6279.

    Google Scholar 

  100. Brown, P.C., Tlsty, T.D., and Schimke, R.T. 1983. Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea. Mol. Cell Biol. 3: 1097–1107.

    PubMed  CAS  Google Scholar 

  101. Myers, C., Cowan, K., Sinha, B., and Chabner, B. 1987. The phenomenon of pleiotropic drug resistance. In Important Advances in Oncology, edited by V.T. Devita, S. Hellman, and S.A. Rosenberg. J.B. Lippincott: Philadelphia, pp. 27–38.

    Google Scholar 

  102. Gottesman, M.M. and Pastan, I. 1988. The multidrug transporter, a double edged sword. J. Biol. Chem. 263: 12163–12166.

    PubMed  CAS  Google Scholar 

  103. Endicott, J.A. and Ling, V. 1989. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 58: 137–171.

    PubMed  CAS  Google Scholar 

  104. Pastan, I. and Gottesman, M.M. 1991. Multidrug resistance. Annu. Rev. Med. 42: 277–286.

    PubMed  CAS  Google Scholar 

  105. Bradley, G., Juranka, P.F., and Ling, V. 1988. Mechanism of multidrug resistance. Biochem. Biophys. Acta 949: 87–128.

    Google Scholar 

  106. Juranka, P.F., Zastawny, R.L., and Ling, V. 1989. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J. 3: 2583–2592.

    PubMed  CAS  Google Scholar 

  107. Inaba, M., Kobayashi, H., Sakurai, Y., and Johnson, R.K. 1979. Active efflux of daunorubicin and Adriamycin in sensitive and resistant sublines of P388 leukemia. Cancer Res. 39: 2200–2203.

    PubMed  CAS  Google Scholar 

  108. Fojo, A.T., Akiyama, S.I., Gottesman, M.M., and Pastan, I. 1985. Reduced drug accumulation in multiple drug-resistant human KB carcinoma cell lines. Cancer Res. 45: 3002–3007.

    PubMed  CAS  Google Scholar 

  109. Cornwell, M.M., Pastan, I., and Gottesman, M.M. 1987. Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J. Biol. Chem. 262: 2166–2170.

    PubMed  CAS  Google Scholar 

  110. Tsuruo, T., Iida, H., Tsukagosti, S., and Sakurai, Y. 1981. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41: 1967–1972.

    PubMed  CAS  Google Scholar 

  111. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y. 1982. Increased accumulation of vincristine and adriamycin in drug-resistant tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 42: 4730–4733.

    PubMed  CAS  Google Scholar 

  112. Gros, P., Groop, J., Roninson, I., Varshavsky, A., and Houseman, D.E. 1986. Isolation and characterization of DNA sequences amplified in multidrug resistant hamster cells. Proc. Natl. Acad. Sci. USA 83: 337–341.

    PubMed  CAS  Google Scholar 

  113. Roninson, I.B., Chin, J.E., Choi, K., Gros, P., Housman, D.E., Fojo, A., Shen, D.-W., Gottesman M.M., and Pastan, I. 1986. Isolation of the human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl. Acad. Sci. USA 83: 4538–4542.

    PubMed  CAS  Google Scholar 

  114. Biedler, J.L. and Riehm, H. 1970. Cellular resistance to Actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic and cytogenetic studies. Cancer Res. 30: 1174–1184.

    PubMed  CAS  Google Scholar 

  115. Riehm, H. and Biedler, J.L. 1971. Cellular resistance to daunomycin in Chinese hamster cells in vitro. Cancer Res. 31: 409–412.

    PubMed  CAS  Google Scholar 

  116. Dano, K. 1972. Cross resistance between vinca alkaloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother. Rep. 56: 701–708.

    PubMed  CAS  Google Scholar 

  117. Ling, V. and Thompson, L.H. 1973. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–116.

    Google Scholar 

  118. Bech-Hansen, N.T., Till, J.E., and Ling, V. 1976. Pleiotropic phenotype of colchicine resistant CHO cells: Cross resistance and collateral sensitivity. J. Cell. Physiol. 88: 23–32.

    PubMed  CAS  Google Scholar 

  119. Ling, V. and Baker, R.M. 1978. Dominance of colchicine resistance in hybrid CHO cells. Somat. Cell Genet. 4: 193–200.

    PubMed  CAS  Google Scholar 

  120. Meyers, M.B. and Biedler, J.L. 1981. Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem. Biophys. Res. Commun. 99: 228–235.

    PubMed  CAS  Google Scholar 

  121. Biedler, J.L. and Peterson, R.H.F. 1981. Altered plasma membrane glycoconjugates of Chinese hamster cells with acquired resistance to actinomycin D, daunorubicin and vincristine. In Molecular Actions and Targets for Cancer Chemotherapeutic Agents, edited by A.C. Sartorelli, J.S. Lazo, and J.R. Bertino. Academic Press: New York, pp. 453–482.

    Google Scholar 

  122. Kartner, N., Riordan, J.R., and Ling, V. 1983. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 221: 1285–1288.

    PubMed  CAS  Google Scholar 

  123. Beck, W.T., Mueller, T.J., and Tanzer, L.R. 1979. Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res. 39: 2070–2076.

    PubMed  CAS  Google Scholar 

  124. Siegfried, J.A., Tritton, T.R., and Sartorelli, A.C. 1983. Comparison of anthracycline concentrations in S180 cell lines of varying sensitivity. Eur. J. Cancer Clin. Oncol. 19: 1133–1141.

    PubMed  CAS  Google Scholar 

  125. Akiyama, S.-L, Fojo, A., Hanover, J.A., Pastan, I., and Gottesman, M.M. 1985. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somat. Cell Mol. Genet. 11: 117–126.

    PubMed  CAS  Google Scholar 

  126. Shen, D.-W., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S., Pastan, I., and Gottesman, M.M. 1986. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J. Biol. Chem. 261: 7762–7770.

    PubMed  CAS  Google Scholar 

  127. Beck, W.T. and Danks, M.K. 1991. Characteristics of multidrug resistance in human tumor cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 3–46.

    Google Scholar 

  128. Roninson, I.B., Pastan, I., and Gottesman, M.M. 1991. Isolation and characterization of the human MDR (P-glycoprotein) genes. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 91–104.

    Google Scholar 

  129. Borst, P. and Van der Bliek, A.M. 1991. Amplification of several different genes in multidrug-resistant Chinese hamster cell lines. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 107–115.

    Google Scholar 

  130. Melera, P.W. and Biedler, J.L. 1991. Molecular and cytogenetic analysis of multidrug resistance-associated gene amplification in Chinese hamster, mouse sarcoma, and human neuroblastoma cell. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 117–141.

    Google Scholar 

  131. Gudkov, A.V., Chernova, O.B., and Kopnin, B.P. 1991. Karyotype and amplicon evolution during stepwise development of multidrug resistance in Djungariian hamster cell lines. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 147–165.

    Google Scholar 

  132. Trent, J.M. and Callen, D.F. 1991. Chromosome localization of P-glycoprotein genes in drug-sensitive and-resistant human cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 169–186.

    Google Scholar 

  133. Roninson, I.B. Use of in-gel DNA renaturation for detection and cloning of amplified genes. In Methods in Enzymology, edited by M.M. Gottesman. Academic Press: San Diego, CA, pp. 332–371.

    Google Scholar 

  134. Rogan, A.M., Hamilton, T.C., Young, R.C., Klecker, R.W. Jr., and Ozols, R.F. 1984. Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science 224: 994–996.

    PubMed  CAS  Google Scholar 

  135. Kartner, N., Evermden-Porelle, D., Bradley, G., and Ling, V. 1985. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316: 820–823.

    PubMed  CAS  Google Scholar 

  136. Chen, C.-J., Chin, J.E., Ueda, K., Clark, D., Pastan, I., Gottesman, M.M., and Roninson, I.B. 1986. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47: 381–389.

    PubMed  CAS  Google Scholar 

  137. Gros, P., Ben-Neriah, Y.U., Croop, J., and Housman, D.E. 1986. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 323: 728–731.

    PubMed  CAS  Google Scholar 

  138. Gerlach, J.H., Endicott, J.A., Juranka, P.F., Henderson, G., Sarangi, F., Deuchars, K.L., and Ling, V. 1986. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324: 485–489.

    PubMed  CAS  Google Scholar 

  139. Ueda, K., Cardarelli, J.C., Gottesman, M.M., and Pastan, I. 1987. Expression of a full-length cDNA for the human MDR1 (P-glycoprotein) gene confers multidrug resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 84: 3004–3008.

    PubMed  CAS  Google Scholar 

  140. Pastan, I., Gottesman, M.M., Ueda, K., Lovelace, E., Rutherford, A.V., and Willingham, M.C. 1988. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85: 4486–4490.

    PubMed  CAS  Google Scholar 

  141. Guild, B.C., Mulligan, R.C., Gros, P., and Housman, D.E. 1988. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection. Proc. Natl. Acad. Sci. USA 85: 1595–1599.

    PubMed  CAS  Google Scholar 

  142. Deuchars, K.L., Du, R.P., Naik, M., Evernden-Porelle, D., Kartner, N., Van der Blieck, A.M., and Ling, V. 1987. Expression of hamster P-glycoprotein and multidrug resistance in DNA-mediated transformants of mouse LTA cells. Mol. Cell. Biol. 7: 718–724.

    PubMed  CAS  Google Scholar 

  143. Shen, D.-W., Fojo, A., Roninson, I.B., Chin, J.E., Soffir, R., Pastan, I., and Gottesman, M.M. 1986. Multidrug resistance of DNA-mediated transformants is linked to transfer of the human mdr1 gene. Mol. Cell. Biol. 6: 4039–4044.

    PubMed  CAS  Google Scholar 

  144. Higgins, C.F., Hiles, I.D., Whalley, K., and Jamieson, D.J. 1985. Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J. 4: 1033–1039.

    PubMed  CAS  Google Scholar 

  145. Kane, S.E., Pastan, I., and Gottesman, M.M. 1990. Genetic basis of multidrug resistance of tumor cells. J. of Bioenerget. Biomembranes 22: 593–618.

    CAS  Google Scholar 

  146. Van der Bliek, A.M., Baas, F., Ten Houte de Lange, T., Kooiman, P.M., Van der Velde-Koerts, T., and Borst, P. 1987. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 6: 3325–3331.

    PubMed  Google Scholar 

  147. Schinkel, A.H., Roelofs, M.E.M., and Borst, P. 1991. Characterization of the human MDK3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res. 51: 2628–2635.

    PubMed  CAS  Google Scholar 

  148. Croop, J.M., Raymond, M., Haber, D., Devault, A., Arceci, R.J., Gros, P., and Housman, D.E. 1989. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol. 9: 1346–1350.

    PubMed  CAS  Google Scholar 

  149. De Bruijn, M.L., Van der Bliek, A.M., Biedler, J.L., and Borst, P. 1986. Differential amplification and disproportionate expression of five genes in three multidrug-resistant Chinese hamster lung cell lines. Mol. Cell. Biol. 6: 4717–4722.

    PubMed  Google Scholar 

  150. Gros, P., Raymond, M., Bell, J., and Housmann, D. 1988. Cloning and characterization of a second member of the mouse mdr gene family. Mol. Cell. Biol. 8: 2770–2778.

    PubMed  CAS  Google Scholar 

  151. Ng, W.F., Sarangi, F., Zastawny, R.L., and Veinot-Drebot, L. 1989. Identification of members of the P-glycoprotein multigene family. Mol. Cell. Biol. 9: 1224–1232.

    PubMed  CAS  Google Scholar 

  152. Jongsma, A.P.M., Spengler, B.A., Van der Bliek, A.M., Borst, P., and Biedler, J.L. 1987. Chromosomal localization of three genes coamplified in the multidrug-resistant CHRC5 Chinese hamster ovary cell line. Cancer Res. 47: 2875–2878.

    PubMed  CAS  Google Scholar 

  153. Choi, K., Chen, C.-J., Kriegler, M., and Roninson, I.B. 1988. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell 53: 519–529.

    PubMed  CAS  Google Scholar 

  154. Meese, E., Olson, S., Horwitz, S., and Trent, J. Gene amplification is mediated by extrachromosomal elements in the multidrug resistant J774.2 murine cell line. Proc. Am. Assoc. Cancer Res. 31: 380.

    Google Scholar 

  155. Chin, J.E., Soffir, R., Noonan, K.E., Choi, K., and Roninson, I.B. 1989. Structure and expression of the human MDR (P-glycoprotein) gene family. Mol. Cell. Biol. 9: 3808–3820.

    PubMed  CAS  Google Scholar 

  156. Fojo, A.T., Lebo, R., Simizu, N., Chin, J.E., Roninson, I.B., Merlino, G.T., Gottesman, M.M., and Pastan, I. 1986. Localization of multidrug resistance-associated DNA sequences to human chromosome 7. Somat. Cell Mol. Genet. 12: 415–420.

    PubMed  CAS  Google Scholar 

  157. Callen, D.F., Baker, E., Simmers, R.N., Seshadri, R., and Roninson, I.B. 1987. Localization of the human multiple drug resistance gene, MDRl, to 7q21.1. Hum. Genet. 77: 142–144.

    PubMed  CAS  Google Scholar 

  158. Van der Bliek, A.M., Meyers, M.B., Biedler, J.L., Hes, E., and Borst, P. 1986. A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is homologous to the calcium-binding light chain of calpain. EMBO J. 5: 3201–3208.

    PubMed  Google Scholar 

  159. Van der Bliek, A.M., Baas, F., Van der Velde-Koerts, T., Biedler, J.L., Meyers, M.B., Ozols, R.F., Hamilton, T.C., Joenje, H., and Borst, P. 1988. Genes amplified and overexpressed in human multidrug-resistant cell lines. Cancer Res. 48: 5927–5932.

    PubMed  Google Scholar 

  160. Stahl, F., Martinsson, T., Dahllof, B., and Levan, G. 1988. Amplification and overexpression of the P-glycoprotein genes and differential amplification of three other genes in SEWA murine multidrug-resistant cells. Hereditas 108: 251–258.

    PubMed  CAS  Google Scholar 

  161. Horwitz, S.B., Goei, S., Greenberger, L., Lothstein, L., Mellado, W., Samar, S.N., Yang, C.-P.H., and Zeheb, R. 1988. Multidrug resistance in the mouse macrophage-like cell line J774.2 In Mechanisms of Drug Resistance in Neoplastic Cells, edited by P.V. Wooley and K.D. Tew. Academic Press: New York, pp. 223–242.

    Google Scholar 

  162. Hsu, S.I., Lothstein, L., and Horwitz, S.B. 1989. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. J. Biol. Chem. 264: 12053–12062.

    PubMed  CAS  Google Scholar 

  163. Devault, A. and Gros, P. 1990. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10: 1652–1663.

    PubMed  CAS  Google Scholar 

  164. Raymond, M., Rose, E., Housman, D.E., and Gros, P. 1990. Physical mapping, amplification, and overexpression of the mouse mdr gene family in multidrug-resistant cells. Mol. Cell. Biol. 10: 1642–1651.

    PubMed  CAS  Google Scholar 

  165. Bradley, G., Naik, M., and Ling, V. 1989. P-glycoprotein expression in multidrug-resistant human ovarian carcinoma cell lines. Cancer Res. 49: 2790–2796.

    PubMed  CAS  Google Scholar 

  166. Goldstein, L.J., Galski, H., Fojo, A.T., Willingham, M.C., Lai, S.-L., Gazdar, A., Pirker, R., Green, A., Crist, J.W., Brodeur, G.M., Lieber, M., Cossman, J., Gottesman, M.M., and Pastan, I. 1989. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81: 116–124.

    PubMed  CAS  Google Scholar 

  167. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1989. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein, P170: evidence for localization in brain capillaries and cross-reactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37: 159–164.

    PubMed  CAS  Google Scholar 

  168. Sugawara, I., Kataoka, I., Morishita, Y., Hamada, H., Tsuruo, T., Itoyama, S., and Mori, S. 1988. Tissue distribution of P-glycoprotein encoded by a multidrug resistant gene as revealed by amonoclonal antibody, MRK16. Cancer Res. 48: 4611–4614.

    PubMed  CAS  Google Scholar 

  169. Goldstein, L.J., Pastan, I., and Gottesman, M.M. In press. Multidrug resistance in human cancer. In Critical Reviews in Oncology/Hematology, Vol. II: 1.

    Google Scholar 

  170. Michieli, M., Giacca, M., Fanin, R., Damiani, D., Geromin, A., and Baccarani, M. 1991. mdr1 gene amplification in acute lymphoblastic leukaemia prior to antileukaemic treatment. Br. J. Haemotol. 78: 228–289.

    Google Scholar 

  171. Deuchars, K.L. and Ling, V. 1989. P-glycoprotein and multidrug resistance in cancer chemotherapy. Semin. Oncol. 16: 156–165.

    PubMed  CAS  Google Scholar 

  172. Holmes, J., Jacobs, A., Carter, G., Janowska-Wieczorek, A., and Padua, R.A. 1989. Multidrug resistance in haemopoietic cell lines, myelodysplastic syndromes and acute myeloblastic leukaemia. Br. J. Haematol. 72: 40–44.

    PubMed  CAS  Google Scholar 

  173. Rothenberg, M.L., Mickley, L.A., Cole, D.E., Balis, F.M., Tsuruo, T., Poplack, D.G., and Fojo, A.T. 1989. Expression of the mdr-1/P-170 gene in patients with acute lymphoblastic leukemia. Blood 74: 1388–1395.

    PubMed  CAS  Google Scholar 

  174. Lonn, U., Lonn, S., Nylen, U., and Stenkvist, B. 1992. Appearance and detection of multiple copies of the mdr-1 gene in clinical samples of mammary carcinoma. Int. J. Cancer 51: 682–686.

    PubMed  CAS  Google Scholar 

  175. Lonn, U., Lonn, S., and Stenkvist, B. 1993. Reduced occurrence of mdr-1 amplification in stage-IV breast-cancer patients treated with tamoxifen compared with other endocrine treatments. Int. J. Cancer 53: 574–578.

    PubMed  CAS  Google Scholar 

  176. Cole, S.P.C., Bhardway, G., Gerlack, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M.V., and Deeler, R.G.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schoenlein, P.V. (1994). Role of gene amplification in drug resistance. In: Goldstein, L.J., Ozols, R.F. (eds) Anticancer Drug Resistance. Cancer Treatment and Research, vol 73. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2632-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2632-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6129-9

  • Online ISBN: 978-1-4615-2632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics