Advertisement

Genetics of drug resistance

  • June L. Biedler
  • Barbara A. Spengler
Part of the Cancer Treatment and Research book series (CTAR, volume 73)

Abstract

Drug resistance is an ever present, dark shadow of cancer chemotherapy. Resistance developing as a consequence of treatment with cancer chemotherapeutic agents was a phenomenon recognized at the outset. In the days when the genome was generally considered to be static or fixed, tumor-cell drug resistance occurring in the patient, in animal models, and in cells in vitro was generally attributed to mutation. The advent of recombinant DNA technology as applied to mammalian cells, the recognition of the dynamic flexibility of the genome as in gene amplification, and the growing body of knowledge of the complexity and multiplicity of pathways governing cellular response have now provided other possible explanations for resistance development in addition to genotypic alteration.

Keywords

Gene Amplification MDR1 Gene Chinese Hamster Cell DHFR Gene Drug Resistance Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farber, S., Diamond, L.K., Mercer, R.D., Sylvester, R.F., Jr., and Wolff, J.A. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238: 787–793.PubMedCrossRefGoogle Scholar
  2. 2.
    Burchenal, J.H., Karnofsky, D.A., Southam, C.M., Myers, W.P.L., Carver, L.F., Dargeon, H.W., Jr., and Rhoads, C.P. 1949. Clinical experience with the 4-amino derivatives of pteroylglutamic acid and 2, 6-diaminopurine in the treatment of neoplastic disease. Am. J. Med. 7: 420.CrossRefGoogle Scholar
  3. 3.
    Burchenal, J.H., Burchenal, J.R., Kushida, M.N., Johnston, S.F., and Williams, B.S. 1949. Studies on the chemotherapy of leukemia. II. The effect of 4-amino-pteroylglutamic acid and 4-amino-N10-methyl-pteroylglutamic acid on transplanted mouse leukemia. Cancer 2: 113–118.PubMedCrossRefGoogle Scholar
  4. 4.
    Burchenal, J.H., Robinson, E., Johnston, S.F., and Kushida, M.N. 1950. The induction of resistance to 4-amino-N10-methyl-pteroylglutamic acid in a strain of transmitted mouse leukemia. Science 3: 116–117.CrossRefGoogle Scholar
  5. 5.
    Law, L.W. and Boyle, P.J. 1950. Development of resistance to folic acid antagonists in a transplantable lymphoid leukemia. Proc. Soc. Exp. Biol. Med. 74: 599–602.PubMedGoogle Scholar
  6. 6.
    DeMars, R. 1974. Resistance of cultured human fibroblasts and other cells to purine and pyrimidine analogues in relation to mutagenesis detection. Mutation Res. 24: 335–364.CrossRefGoogle Scholar
  7. 7.
    Siminovitch, L. 1976. On the nature of hereditable variation in cultured somatic cells. Cell 7: 1–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Harris, M. 1971. Mutation rates in cells at different ploidy levels. J. Cell. Physiol. 78: 177–184.PubMedCrossRefGoogle Scholar
  9. 9.
    Mezger-Freed, L. 1972. Effect of ploidy and mutagens on bromodeoxyuridine resistance in haploid and diploid frog cells. Nature New Biol. 235: 245–246.PubMedCrossRefGoogle Scholar
  10. 10.
    Biedler, J.L., Schrecker, A.W., and Hutchison, D.J. 1963. Selection of chromosomal variant in amethopterin-resistant sublines of leukemia L1210 with increased levels of dihydrofolate reductase. J. Natl. Cancer Inst. 31: 575–601.PubMedGoogle Scholar
  11. 11.
    Biedler, J.L., Albrecht, A.M., and Hutchison, D.J. 1965. Cytogenetics of mouse leukemia L1210. I. Association of a specific chromosome with dihydrofolate reductase activity in amethopterin-treated sublines. Cancer Res. 25: 246–257.PubMedGoogle Scholar
  12. 12.
    Biedler, J.L. and Spengler, B.A. 1976. Metaphase chromosome anomaly: Association with drug resistance and cell-specific products. Science 191: 185–187.PubMedCrossRefGoogle Scholar
  13. 13.
    Albrecht, A.M. and Biedler, J.L. 1984. Acquired resistance of tumor cells to folate antagonists. In Folate Antagonists as Therapeutic Agents, edited by F.M. Sirotnak, J.J. Burchall, W.B. Ensminger, and J.A. Montgomery, Vol. 1. Academic Press: New York, pp. 317–353.Google Scholar
  14. 14.
    Kellems, R.E., Alt, F.W., and Schimke, R.T. 1976. Regulation of folate reductase synthesis in sensitive and methotrexate-resistant Sarcoma 180 cells. J. Biol. Chem. 251: 6987–6993.PubMedGoogle Scholar
  15. 15.
    Alt, F.W., Kellems, R.E., Bertino, J.R., and Schimke, R.T. 1978. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J. Biol. Chem. 253: 1357–1370.PubMedGoogle Scholar
  16. 16.
    Nunberg, J.H., Kaufman, R.J., Schimke, R.T., Urlaub, G., and Chasin, L.A. 1978. Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc. Natl. Acad. Sci. USA 75: 5553–5556.PubMedCrossRefGoogle Scholar
  17. 17.
    Hakala, M.T., Zakrzewski, S.F., and Nichol, C.A. 1961. Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J. Biol. Chem. 236: 952–958.PubMedGoogle Scholar
  18. 18.
    Kellems, R.E. (ed). 1992. Gene Amplification in Mammalian Cells: A Comprehensive Guide. New York: Marcel Dekker, pp. 1–543.Google Scholar
  19. 19.
    Sirotnak, F.M. 1987. Determinants of resistance to antifolates: biochemical phenotypes, their frequency of occurrence and circumvention. NCI Monogr. 5: 27–37.PubMedGoogle Scholar
  20. 20.
    Schweitzer, B.I., Dicker, A.P., and Bertino, J.R. 1990. Dihydrofolate reductase as a therapeutic target. FASEB J. 4: 2444–2452.Google Scholar
  21. 21.
    Curt, G.A., Carney, D.M., Cowan, K.H., Jolivet, J., Bailey, B.D., Drake, J.C., Kao-Shan, C.W., Minna, J.D., and Chabner, B.A. 1983. Unstable methotrexate resistance in human small-cell carcinoma associated with double minute chromosomes. N. Engl. J. Med. 308: 199–202.PubMedCrossRefGoogle Scholar
  22. 22.
    Cardman, M.D., Schornagel, J.H., Rivest, R.S., Srimatkandada, S., Portlock, C.S., Duffy, T., and Bertino, J.R. 1984. Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J. Clin. Oncol. 2: 16–20.Google Scholar
  23. 23.
    Horns, R.C., Dower, W.J., and Schimke, R.T. 1984. Gene amplification in a leukemic patient treated with methotrexate. J. Clin. Oncol. 2: 1–7.Google Scholar
  24. 24.
    Trent, J.M., Buick, R.M., Olson, S., Horns, R.C., and Schimke, R.T. 1984. Cytologic support for gene amplification in methotrexate-resistant cells obtained from a patient with ovarian adenocarcinoma. J. Clin. Oncol. 2: 8–15.PubMedGoogle Scholar
  25. 25.
    Melera, P.W. 1991. Acquired versus intrinsic resistance to methotrexate: diversity of the drug-resistant phenotype in mammalian cells. Semin. Cancer Biol. 2: 245–255.PubMedGoogle Scholar
  26. 26.
    Mines, L.S., Yang, C.-H., Spengler, B.A., Biedler, J.L., and Sirotnak, F.M. 1988. A gene amplification-associated cytogenetic abnormality in an L1210 cell variant overproducing the folate transporter. Proc. Am. Assoc. Cancer Res. 29: 289.Google Scholar
  27. 27.
    Sirotnak, F.M. 1985. Obligate genetic expression in tumor cells of a fetal membrane property mediating ‘folate’ transport: Biological significance and implications for improved therapy of human cancer. Cancer Res. 45: 3992–4000.PubMedGoogle Scholar
  28. 28.
    Biedler, J.L., Meyers, M.B., Peterson, R.H.F., and Spengler, B.A. 1980. Marker chromosome with a homogeneously staining region (HSR) in vincristine-resistant cells. Proc. Am. Assoc. Cancer Res. 21: 292.Google Scholar
  29. 29.
    Biedler, J.L. and Peterson, R.H.F. 1981. Altered plasma membrane glycocon jugates of Chinese hamster cells with acquired resistance to actinomycin D, daunorubicin, and vincristine. In Molecular Actions and Targets for Cancer Chemotherapeutic Agents, edited by A.C. Sartorelli, J.S. Lazo, and J.R. Bertino. Bristol-Myers Cancer Symposia, Vol. 2. Academic Press: New York, pp. 453–482.Google Scholar
  30. 30.
    Biedler, J.L. and Meyers, M.B. 1989. Multidrug resistance (Vinca alkaloids, actinomycin D, and anthracycline antibiotics). In Drug Resistance in Mammalian Cells. Vol. II: Anticancer and Other Drugs, edited by R.S. Gupta. CRC Press: Boca Raton, FL, pp. 57–88.Google Scholar
  31. 31.
    Melera, P.W. and Biedler, J.L. 1991. Molecular and cytogenetic analysis of multidrug resistance-associated gene amplification in Chinese hamster, mouse sarcoma, and human neuroblastoma cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 117–145.CrossRefGoogle Scholar
  32. 32.
    Roninson, I.B., Abelson, H.T., and Housman, D.E. 1984. Amplification of specific DNA sequences correlates with multidrug resistance in Chinese hamster cells. Nature 309: 626–628.PubMedCrossRefGoogle Scholar
  33. 33.
    Riordan, J.R., Deuchars, K., Kartner, N., Alon, N., Trent, J., and Ling, V. 1985. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316: 817–819.PubMedCrossRefGoogle Scholar
  34. 34.
    Biedler, J.L. and Riehm, H. 1970. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 30: 1174–1184.PubMedGoogle Scholar
  35. 35.
    Kessel, D. and Bosmann, H.B. 1970. On the characteristics of actinomycin D resistance in L5178Y cells. Cancer Res. 30: 2695–2701.PubMedGoogle Scholar
  36. 36.
    Riehm, H. and Biedler, J.L. 1972. Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and daunomycin. Cancer Res. 32: 1195–1200.PubMedGoogle Scholar
  37. 37.
    Ling, V. and Thompson, L.H. 1974. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–116.PubMedCrossRefGoogle Scholar
  38. 38.
    Juliano, R.L. and Ling, V. 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455: 152–162.PubMedCrossRefGoogle Scholar
  39. 39.
    Peterson, R.H.F. and Biedler, J.L. 1978. Plasma membrane proteins and glycoproteins from Chinese hamster cells sensitive and resistant to actinomycin DJ. Supramol. Struct. 9: 289–298.CrossRefGoogle Scholar
  40. 40.
    Scotto, K.W., Biedler, J.L. and Melera, P.W. 1986. Amplification and expression of genes associated with multidrug resistance in mammalian cells. Science 232: 751–755.PubMedCrossRefGoogle Scholar
  41. 41.
    Van der Bliek, A.M., Baas, F., Van der Velde-Koerts, T., Biedler, J.L., Meyers, M.B., Ozols, R.F., Hamilton, T.C., Joenje, H., and Borst, P. 1988. Genes amplified and overexpressed in human multidrug-resistant cell lines. Cancer Res. 48: 5927–5932.PubMedGoogle Scholar
  42. 42.
    Michieli, M., Giacca, M., Fanin, R., Damiani, D., Geromin, A., and Baccarani, M. 1991. mdr1 gene amplification in acute lymphoblastic leukaemia prior to antileukaemic treatment. Br. J. Haematol. 78: 288–289.PubMedCrossRefGoogle Scholar
  43. 43.
    Devine, S.E., Ling, V., and Melera, P.W. 1992. Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance. Proc. Natl. Acad. Sci. USA 89: 4564–4568.PubMedCrossRefGoogle Scholar
  44. 44.
    Biedler, J.L., Riehm, H., Peterson, R.H.F., and Spengler, B.A. 1975. Membrane-mediated drug resistance and phenotypic reversion to normal growth behavior of Chinese hamster cells. J. Natl. Cancer Inst. 55: 671–680.PubMedGoogle Scholar
  45. 45.
    Beck, W.T. and Danks, M.R. 1991. Characteristics of multidrug resistance in human tumor cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 3–55.CrossRefGoogle Scholar
  46. 46.
    Biedler, J.L., Casals, D., Chang, T.-D., Meyers, M.B., Spengler, B.A., and Ross, R.A. 1991. Multidrug-resistant human neuroblastoma cells are more differentiated than controls and retinoic acid further induces lineage-specific differentiation. In Advances in Neuroblastoma Research 3, edited by A.E. Evans, G.J. D’Angio, A.G. Knudson, Jr., and R.C. Seeger. Prog. Clin. Biol. Res., Vol. 366. Wiley-Liss: New York, pp. 181–191.Google Scholar
  47. 47.
    Bates, S.E., Mickley, L.A., Chen, Y.-N., Richert, N., Rudick, J., Biedler, J.L., and Fojo, A.T. 1989. Expression of a drug resistance gene in human neuroblastoma cell lines: Modulation by retinoic acid-induced differentiation. Mol. Cell. Biol. 9: 4337–4344.PubMedGoogle Scholar
  48. 48.
    Mickley, L.A., Bates, S.E., Richert, N.D., Currier, S., Tanaka, S., Foss, F., Rosen, N., and Fojo, A.T. 1989. Modulation of the expression of a multidrug resistance gene (mdr1/P-glycoprotein) by differentiating agents. J. Biol. Chem. 264: 18031–18040.PubMedGoogle Scholar
  49. 49.
    Peterson, R.H.F., Beutler, W.J., and Biedler, J.L. 1979. Ganglioside composition of malignant and actinomycin D-resistant nonmalignant Chinese hamster cells. Biochem. Pharmacol. 28: 579–582.Google Scholar
  50. 50.
    Peterson, R.H.F., Meyers, M.B., Spengler, B.A., and Biedler, J.L. 1983. Alteration of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res. 43: 222–228.PubMedGoogle Scholar
  51. 51.
    Hakamori, S. 1980. Possible role of glycolipid in development, cell growth regulation, and transformation. Prog. Clin. Biol. Res. 41: 873–886.Google Scholar
  52. 52.
    Meyers, M.B., Merluzzi, V.J., Spengler, B.A., and Biedler, J.L. 1986. Epidermal growth factor receptor is increased in multidrug-resistant Chinese hamster and mouse tumor cells. Proc. Natl. Acad. Sci. USA 83: 5521–5525.PubMedCrossRefGoogle Scholar
  53. 53.
    Meyers, M.B., Shen, W.P.V., Spengler, B.A., Ciccarone, V., O’ Brien, J.P., Donner, D.B., Furth, M.E., and Biedler, J.L. 1988. Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J. Cell. Biochem. 38: 87–97.PubMedCrossRefGoogle Scholar
  54. 54.
    Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661–665.PubMedCrossRefGoogle Scholar
  55. 55.
    Blobe, G.C., Sachs, C.W., Khan, W.A., Fabbro, E., Stabel, S., Wetsel, W.C., Obeid, L.M., Fine, R.L., and Hannun, Y.A. 1993. Selective regulation of expression of protein kinase C (PKC) isoenzymes in multidrug-resistant MCF-7 cells. Functional significance of enhanced expression of PKC α. J. Biol. Chem. 268: 658–664.PubMedGoogle Scholar
  56. 56.
    Gruber, J.R., Ohno, S., and Niles, R.M. 1992. Increased expression of protein kinase Cα plays a key role in retinoic acid-induced melanoma differentiation. J. Biol. Chem. 267: 13356–13360.PubMedGoogle Scholar
  57. 57.
    Benzil, D.L., Finkelstein, S.D., Epstein, M.H., and Finch, P.W. 1992. Expression pattern of α-protein kinase C in human astrocytomas indicates a role in malignant progression. Cancer Res. 52: 2951–2956.PubMedGoogle Scholar
  58. 58.
    Zijlstra, J.C., de Vries, E.G.E., and Mulder, N.H. 1987. Multifactorial drug resistance in adriamycin-resistant human breast cancer cells. Cancer Res. 47: 5141–5148.Google Scholar
  59. 59.
    Beck, W.T. and Danks, M.K. 1991. Mechanisms of resistance to drugs that inhibit DNA topoisomerases. Semin. Cancer Biol. 2: 235–244.PubMedGoogle Scholar
  60. 60.
    Chung, T.D.Y., Drake, F.H., Tan, K.B., Per, S.R., Crooke, ST., and Mirabelli, C.K. 1989. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II enzymes. Proc. Natl. Acad. Sci. USA 86: 9431–9435.PubMedCrossRefGoogle Scholar
  61. 61.
    Bugg, B.Y., Danks, M.K., Beck, W.T., and Suttle, D.P. 1991. Expression of a mutant DNA topoisomerase II in CCRF-CEM human leukemic cells selected for resistance to teniposide. Proc. Natl. Acad. Sci. USA 88: 7654–7658.PubMedCrossRefGoogle Scholar
  62. 62.
    Hinds, M., Deisseroth, K., Mayes, J., Altschuler, E., Jansen, R., Ledley, F.D., and Zwelling, L.A. 1991. Identification of a point mutation in the topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res. 51: 4729–4731.PubMedGoogle Scholar
  63. 63.
    Nitiss, J.L., Liu, Y.-X., and Hsiung, Y. 1993. A temperature sensitive topoisomerase II allele confers temperature dependent drug resistance on amsacrine and etoposide: A genetic system for determining the targets of topoisomerase II inhibitors. Cancer Res. 53: 89–93.PubMedGoogle Scholar
  64. 64.
    Danks, M.K., Beck, W.T., and Suttle, D.P. 1993. Topoisomerase IIα mutation in leukemic cells from a patient with lineage switch AML. Proc. Am. Assoc. Cancer Res. 34: 333.Google Scholar
  65. 65.
    Takano, H., Mickley, L., Spengler, B., Biedler, J.L., and Fojo, T. 1993. A topoisomerase II mutation in adriamycin-selected cells. Proc. Am. Assoc. Cancer Res. 34: 333.Google Scholar
  66. 66.
    Cole, S.P.C., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M.V., and Deeley, R.G. 1992. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258: 1650–1654.PubMedCrossRefGoogle Scholar
  67. 67.
    Lewis, A.D., Hickson, I.D., Robson, C.N., Harris, A.L., Hayes, J.D., Griffiths, S.A., Manson, M.M., Hall, A.E., Moss, J.E., and Wolf, C.R. 1988. Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc. Natl. Acad. Sci. USA 85: 8511–8515.PubMedCrossRefGoogle Scholar
  68. 68.
    Hildebrand, C.E., Grady, D.L., and Stallings, R.L. 1992. Organization and amplification of metallothionein genes in eukaryotic cells. In Gene Amplification in Mammalian Cells: A Comprehensive Guide, edited by R.E. Kellems. Marcel Dekker: New York, pp. 185–193.Google Scholar
  69. 69.
    Lazo, J.S. and Basu, A. 1991. Metallothionein expression and transient resistance to electrophilic antineoplastic drugs. Semin. Cancer Biol. 2: 267–271.PubMedGoogle Scholar
  70. 70.
    Erickson, L.C., Laurent, G., Sharkey, N.A., and Kohn, K.W. 1980. DNA cross-linking and monoadduct repair in nitrosourea-treated human tumour cells. Nature 288: 727–729.PubMedCrossRefGoogle Scholar
  71. 71.
    Brent, T.P. 1985. Isolation and purification of O6-alkylguanine-DNA alkyltransduced crosslinks by purified enzyme. Pharmacol. Ther. 31: 121–140.PubMedCrossRefGoogle Scholar
  72. 72.
    Pegg, A.E. 1990. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 50: 6119–6129.PubMedGoogle Scholar
  73. 73.
    Yarosh, D.B., Foote, R.S., Mitra, S., and Day, R.S. III. 1983. Repair of O-6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains. Carcinogenesis 4: 199–205.PubMedCrossRefGoogle Scholar
  74. 74.
    Erickson, L.C. 1991. The role of O-6 methylguanine DNA methyltransferase (MGMT) in drug resistance and strategies for its inhibition. Semin. Cancer Biol. 2: 257–265.PubMedGoogle Scholar
  75. 75.
    Pieper, R.O., Costello, J.F., Kroes, R.A., Futscher, B.W., Marathi, U., and Erickson, L.C. 1991. Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun. 3: 241–253.PubMedGoogle Scholar
  76. 76.
    Harris, L.C, Potter, P.M., Remack, J.S., and Brent, T.P. 1992. A comparison of human O6-methylguanine-DNA methyltransferase promoter activity in Mer+ and Mer- cells. Cancer Res. 52: 6404–6406.PubMedGoogle Scholar
  77. 77.
    O’Brien, J.P. and Cordon-Cardo, C. 1991. On the origins of clinical drug resistance. Semin. Cancer Biol. 2: 227–233.Google Scholar
  78. 78.
    Kuczek, T. and Chan, T.C.K. 1992. Mechanism-based model for tumor drug resistance. Cancer Chemother. Pharmacol. 30: 355–359.Google Scholar
  79. 79.
    Spengler, B.A., Druskin, H., Safa, A., Meyers, M.B., and Biedler, J.L. 1991. Rapid loss of resistance and P-glycoprotein expression in multidrug-resistant cells treated with verapamil. Proc. Am. Assoc. Cancer Res. 32: 376.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • June L. Biedler
  • Barbara A. Spengler

There are no affiliations available

Personalised recommendations