Skip to main content

Biochemical Markers of Coronary Recanalization After Fibrinolytic Therapy

  • Chapter
The Modern Era of Coronary Thrombolysis

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 160))

  • 59 Accesses

Abstract

Rapid assessment of coronary patency in patients receiving intravenous fibrinolytic agents for the treatment of acute myocardial infarction is needed to identify those in whom adequate or sustained patency has not been achieved who could benefit from secondary mechanical interventions (e.g., coronary angioplasty and surgical revascularization). Because delayed initiation of secondary interventions will impede salvage of ischemic myocardium, markers chosen to assess the success of fibrinolytic therapy should have qualities including: 1) sensitivity to coronary recanalization within minutes of its occurrence facilitating prospective diagnosis; 2) rapidity for virtual online acquisition of results; and 3) specificity for persistent and complete recanalization, because those patients exhibiting transitory or incomplete recanalization may benefit from additional interventions as much as those with persistent arterial occlusion. Among these qualities, high specificity for arteries potentially in need of additional intervention is the most important, even if a modest number of patients with patent vessels are falsely identified as having an occluded artery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Califf RM, O’Neil W, Stack RS, et al for the TAMI Study Group: Failure of simple clinical measurements to predict perfusion status after intravenous thrombolysis. Ann Int Med 1988;108:658–662.

    PubMed  CAS  Google Scholar 

  2. Miller FC, Krucoff MW, Satler LF, et al: Ventricular arrhythmias during reperfusion. Am Heart J 1986;112:928–932.

    Article  PubMed  CAS  Google Scholar 

  3. Kircher BJ, Topol EJ, O’Neill WW, Pitt B: Prediction of infarct coronary artery recanalization after intravenous thrombolytic therapy. Am J Cardiol 1987;59:513–515.

    Article  PubMed  CAS  Google Scholar 

  4. Hackett D, Davies G, Chierchia S, Maseri A: Intermittent coronary occlusion in acute myocardial infarction. Value of combined thrombolytic and vasodilator therapy. N Engl J Med 1987;317:1055–1059.

    Article  PubMed  CAS  Google Scholar 

  5. Shell W, Mickle DK, Swan HJC: Effects of nonsurgical myocardial reperfusion on plasma creatine kinase kinetics in man. Am Heart J 1983;106:665–669.

    Article  PubMed  CAS  Google Scholar 

  6. Wei JY, Markis JE, Malagold M, Grossman W: Time course of serum cardiac enzymes after intracoronary thrombolytic therapy. Arch Intern Med 1985;145:1596–1600.

    Article  PubMed  CAS  Google Scholar 

  7. Panteghini M, Cuccia C, Calarco M, Gei P, Bozzetti E, Visioli O: Serum enzymes in acute myocardial infarction after intracoronary thrombolysis. Clin Biochem 1986;19:294–297.

    Article  PubMed  CAS  Google Scholar 

  8. Gore JM, Roberts R, Ball SP, Montero A, Goldberg RJ, Dalen JE: Peak creatine kinase as a measure of effectiveness of thrombolytic therapy in acute myocardial infarction. Am J Cardiol 1987;59:1234–1238.

    Article  PubMed  CAS  Google Scholar 

  9. Garabedian HD, Gold HK, Yasuda T, et al: Detection of coronary artery reperfusion with creatine kinase-MB determinations during thrombolytic therapy: Correlation with acute angiography. J Am Coll Cardiol 1988;11:729–734.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis BS, Ganz W, Laramee P, et al: Usefulness of a rapid initial increase in plasma creatine kinase activity as a marker of reperfusion during thrombolytic therapy for acute myocardial infarction. Am J Cardiol 1988;62:20–24.

    Article  PubMed  CAS  Google Scholar 

  11. Grande P, Granborg J, Clemmensen P, Sevilla DC, Wagner NB, Wagner GS: Indices of reperfusion in patients with acute myocardial infarction using characteristics of the CK-MB time-activity curve. Am Heart J 1991;122:400–408.

    Article  PubMed  CAS  Google Scholar 

  12. Apple FS, Sharkey SW, Werdick M, Elsperger KJ, Tilbury RT: Analyses of creatine kinase isoenzymes and isoforms in serum to detect reperfusion after acute myocardial infarction. Clin Chem 1987;33:507–511.

    PubMed  CAS  Google Scholar 

  13. Panteghini M, Pagani F: Isoforms of creatine kinase isoenzymes in serum in acute myocardial infarction after intracoronary thromboysis. Clin Chem 1987;33:2039–2042.

    PubMed  CAS  Google Scholar 

  14. Seacord LM, Abendschein DR, Nohara R, Hartzler G, Sobel BE, Jaffe AS: Detection of reperfusion within 1 hour after coronary recanalisation by analysis of isoforms of the MM creatine kinase isoenzyme in plasma. Fibrinolysis 1988;2:151–156.

    Google Scholar 

  15. Christenson RH, Ohman EM, Clemmensen P, et al: Characteristics of creatine kinase-MB and MB isoforms in serum after reperfusion in acute myocardial infarction. Clin Chem 1989;35:2179–2185.

    PubMed  CAS  Google Scholar 

  16. Abendschein DR, Ellis AK, Eisenberg PR, KlockeFJ, Sobel BE, Jaffe AS: Prompt detection of coronary recanalization by analysis of rates of change of concentrations of macromolecular markers in plasma. Coronary Artery Disease 1991;2:201–212.

    Article  Google Scholar 

  17. Puleo PR, Perryman MB: Noninvasive detection of reperfusion in acute myocardial infarction based on plasma activity of creatine kinase MB subforms. J Am Coll Cardiol 1991;17:1047–1052.

    Article  PubMed  CAS  Google Scholar 

  18. Laperche T, Steg PG, Benessiano J, Dehoux M, Juliard J-M, Himbert D, Gourgon R: Patterns of myoglobin and MM creatine kinase isoforms release early after intravenous thrombolysis or direct percutaneous transluminal coronary angioplasty for acute myocardial infarction, and implications for the early noninvasive diagnosis of reperfusion. Am J Cardiol 1992;70:1129–1134.

    Article  PubMed  CAS  Google Scholar 

  19. Schofer J, Ress-Grigolo G, Voigt KD, Mathey DG, for the PRIMI study group: Early detection of coronary artery patency after thrombolysis by determination of the MM creatine kinase isoforms in patients with acute myocardial infarction. Am Heart J 1992;123:846–853.

    Article  PubMed  CAS  Google Scholar 

  20. Norris RM, Twigden DG, Williams BF, Johnson RN, White HD: Use of creatine kinase isoforms for diagnosis of infarct artery patency after thrombolytic therapy with streptokinase. Cor Art Dis 1993;4:201–205.

    Article  CAS  Google Scholar 

  21. Abe S, Nomoto K, Arima S, et al: Detection of reperfusion 30 and 60 minutes after coronary recanalization by a rapid new assay of creatine kinase isoforms in acute myocardial infarction. Am Heart J 1993;125:649–656.

    Article  PubMed  CAS  Google Scholar 

  22. Morelli RL, Emilson B, Rapaport E: MM-CK subtypes diagnose reperfusion early after myocardial infarction. Am J Med Sci 1987;293:139–149.

    Article  PubMed  CAS  Google Scholar 

  23. Ellis AK, Little T, Masud ARZ, Klocke FJ: Patterns of myoglobin release after reperfusion of injured myocardium. Circulation 1985;72:639–647.

    Article  PubMed  CAS  Google Scholar 

  24. Ellis AK, Little T, Masud ARZ, Liberman HA, Morris DC, Klocke FJ: Early noninvasive detection of successful reperfusion in patients with acute myocardial infarction. Circulation 1988;78:1352–1357.

    Article  PubMed  CAS  Google Scholar 

  25. Katus HA, Remppis A, Scheffold T, Diederich KW, Kuebler W: Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991;67:1360–1367.

    Article  PubMed  CAS  Google Scholar 

  26. Krucoff MW, Green CE, Satler LF, et al: Noninvasive detection of coronary artery patency using continuous ST-segment monitoring. Am J Cardiol 1986;57:916–922.

    Article  PubMed  CAS  Google Scholar 

  27. Dellborg M, Topol EJ, Swedberg K: Dynamic QRS complex and ST segment vectorcardiographic monitoring can identify vessel patency in patients with acute myocardial infarction treated with reperfusion therapy. Am Heart J 1991;122:943–948.

    Article  PubMed  CAS  Google Scholar 

  28. Krucoff MW, Croll MA, Pope JE, et al for the TAMI 7 study group. Continuous 12-lead ST-segment recovery analysis in the TAMI 7 study. Performance of a noninvasive method for real-time detection of failed myocardial reperfusion. Circulation 1993;88:437–446.

    Article  PubMed  CAS  Google Scholar 

  29. Krucoff MW, Croll MA, Pope JE, et al: Continuously updated 12-lead ST-segment recovery analysis for myocardial infarct artery patency assessment and its correlation with multiple simultaneous early angiographic observations. Am J Cardiol 1993;71:145–151.

    Article  PubMed  CAS  Google Scholar 

  30. Blumenthal MR, Wang H-H, Liu LMP: Experimental coronary arterial occlusion and release. Effects on enzymes, electrocardiograms, myocardial contractility and reactive hyperemia. Am J Cardiol 1975;36:225–233.

    Article  PubMed  CAS  Google Scholar 

  31. Michael LH, Hunt JR, Weilbaecher D, et al: Creatine kinase and Phosphorylase in cardiac lymph: coronary occlusion and reperfusion. Am J Physiol 1985;248:H350–H359.

    PubMed  CAS  Google Scholar 

  32. van der Laarse A, van der Wall EE, van den Pol RC, et al: Rapid enzyme release from acutely infarcted myocardium after early thrombolytic therapy: Washout or reperfusion damage? Am Heart J 1988;115:711–716.

    Article  PubMed  Google Scholar 

  33. Christenson RH, Ohman EM, Vollmer RT, Clemmensen P, Grande P, Wagner GS: Serum release of the creatine kinase tissue-specific isoforms MM3 and MB2 is simultaneous during myocardial reperfusion. Clin Chim Acta 1991;200:23–34.

    Article  PubMed  CAS  Google Scholar 

  34. Hirai T, Fujita M, Sasayama S, Ohno A, Yamanishi K, Nakajima H, Asanoi H: Importance of coronary collateral circulation for kinetics of serum creatine kinase in acute myocardial infarction. Am J Cardiol 1987;60:446–450.

    Article  PubMed  CAS  Google Scholar 

  35. Zabel M, Hohnloser SH, Koster W, Prinz M, Kasper W, Just H: Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation 1993;87:1542–1550.

    Article  PubMed  CAS  Google Scholar 

  36. Delanghe JR, De Mol AM, De Buyzere ML, De Scheerder IK, Wieme RJ: Mass concentration and activity concentration of creatine kinase isoenzyme MB compared in serum after acute myocardial infarction. Clin Chem 1990;36:149–153.

    PubMed  CAS  Google Scholar 

  37. Mair J, Artner-Dworzak E, Dienstl A, et al: Early detection of acute myocardial infarction by measurement of mass concentration of creatine kinase-MB. Am J Cardiol 1991;68:1545–1550.

    Article  PubMed  CAS  Google Scholar 

  38. Landt Y, Vaidya HC, Porter SE, et al: Semi-automated direct colorimetric measurement of creatine kinase isoenzyme MB activity after extraction from serum by use of a CK-MB-specific monoclonal antibody. Clin Chem 1988;34:575–581.

    PubMed  CAS  Google Scholar 

  39. Wevers RA, Olthuis HP, Van Niel JCC, van Wilgenburg MGM, Soons JBJ: A study on the dimeric structure of creatine kinase (EC 2.7.3.2). Clin Chim Acta 1977;75:377–385.

    Article  PubMed  CAS  Google Scholar 

  40. Morelli RL, Carlson CJ, Emilson B, Abendschein DR, Rapaport E: Serum creatine kinase MM isoenzyme sub-bands after acute myocardial infarction in man. Circulation 1983;67:1283–1289.

    Article  PubMed  CAS  Google Scholar 

  41. George S, Ishikawa Y, Perryman MB, Roberts R: Purification and characterization of naturally occurring and in vitro induced multiple forms of MM creatine kinase. J Biol Chem 1984;259:2667–2674.

    PubMed  CAS  Google Scholar 

  42. Billadello JJ, Roman DG, Grace AM, Sobel BE, Strauss AW: The nature of post-translational formation of MM creatine kinase isoforms. J Biol Chem 1985;260:14988–14992.

    PubMed  CAS  Google Scholar 

  43. Billadello JJ, Fontanet HL, Strauss AW, Abendschein DR: Characterization of MB creatine kinase isoform conversion in vitro and in vivo in dogs. J Clin Invest 1989;83:1637–1643.

    Article  PubMed  CAS  Google Scholar 

  44. Abendschein DR, Serota H, Plummer Jr TH, Amiraian K, Strauss AW, Sobel BE, Jaffe AS: Conversion of MM creatine kinase isoforms in human plasma by car-boxypeptidase N. J Lab Clin Med 1987;110:798–806.

    PubMed  CAS  Google Scholar 

  45. Michelutti L, Falter H, Certossi S, Marcotte B, Mazzuchin A: Isolation and purification of creatine kinase conversion factor from human serum and its identification as carboxypeptidase N. Clin Biochem 1987;20:21–29.

    Article  PubMed  CAS  Google Scholar 

  46. Hashimoto H, Grace AM, Billadello JJ, Gross RW, Strauss AW, Sobel BE: Nondenaturing quantification of subforms of canine MM creatine kinase isoenzymes (isoforms) and their interconversion. J Lab Clin Med 1984;103:470–484.

    PubMed  CAS  Google Scholar 

  47. Prager NA, Suzuki T, Jaffe AS, Sobel BE, Abendschein DR: Nature and time course of generation of isoforms of creatine kinase, MB fraction in vivo. J Am Coll Cardiol 1992;20:414–419.

    Article  PubMed  CAS  Google Scholar 

  48. Abendschein DR, Fontanet HL, Markham J, Sobel BE: Physiologic modelling of MM creatine kinase isoforms. Mathl Comput Modelling 1988;11:621–625.

    Article  Google Scholar 

  49. Devries SR, Sobel BE, Abendschein DR: Early detection of myocardial reperfusion by assay of plasma MM-creatine kinase isoforms in dogs. Circulation 1986;74:567–572.

    Article  PubMed  CAS  Google Scholar 

  50. Nohara R, Myears DW, Sobel BE, Abendschein DR: Optimal criteria for rapid detection of myocardial reperfusion by creatine kinase MM isoforms in the presence of residual high grade coronary stenosis. J Am Coll Cardiol 1989;14:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  51. Collen D: Coronary thrombolysis: Streptokinase or recombinant tissue-type plasminogen activator? Ann Int Med 1990;112:529–538.

    PubMed  CAS  Google Scholar 

  52. Abendschein DR, Puleo PR, Cannon CP, and the TIMI IV and V investigators. Noninvasive detection of early coronary artery patency based on plasma MM and MB creatine kinase (CK) isoforms. Circulation 1992;86:1–267.

    Article  Google Scholar 

  53. Jaffe AS, Eisenberg PR, Abendschein DR: New criteria for detection of coronary recanalization with MB CK isoforms. Circulation 1992;86:1–267.

    Article  Google Scholar 

  54. Abendschein DR, Fontanet HL, Nohara R: Optimized preservation of isoforms of creatine kinase MM isoenzyme in plasma specimens and their rapid quantification by semi-automated chromatofocusing. Clin Chem 1990;36:723–727.

    PubMed  CAS  Google Scholar 

  55. NoharaR, Sobel BE, Jaffe AS, Abendschein DR: Quantitative analysis for isoforms of creatine kinase MM in plasma by chromatofocusing, with on-line monitoring of enzyme activity. Clin Chem 1988;34:235–239.

    PubMed  CAS  Google Scholar 

  56. Kanemitsu F, Okigaki T: Creatine kinase MB isoforms for early diagnosis and monitoring of acute myocardial infarction. Clin Chim Acta 1992;206:191–199.

    Article  PubMed  CAS  Google Scholar 

  57. Williams J, Williams KM, Marshall T: Heterogeneity of serum creatine kinase isoenzyme MM in myocardial infarction: clinical significance and post-synthetic conversion of “abnormal” sub-bands. Clin Chem 1989;35:206–210.

    PubMed  CAS  Google Scholar 

  58. Williams J, Williams KM, Marshall T: Heterogeneity of creatine kinase isoenzyme MM in serum in myocardial infarction: interconversion of the “normal” and “abnormal” sub-bands by glutathione. Clin Chem 1990;36:775–777.

    PubMed  CAS  Google Scholar 

  59. Shah VD, Yen S-E, Diorio AF, Hammer PA: Two commercial test kits for CK-MM isoforms evaluated for early recognition of acute myocardial infarction. Clin Chem 1989;35:493.

    PubMed  CAS  Google Scholar 

  60. Suzuki T, Shiraishi T, Tomita K, Totani M, Murachi T: Monoclonal antibody inhibiting creatine kinase MM3 but not isoform MM1. Clin CHem 1990;36:153–156.

    PubMed  CAS  Google Scholar 

  61. Katus HA, Diederich KW, Scheffold T, Uellner M, Schwarz F, Kubler W: Noninvasive assessment of infarct reperfusion: the predictive power of the time to peak value of myoglobin, CK MB, and CK in serum. Eur Heart J 1988;9:619–624.

    PubMed  CAS  Google Scholar 

  62. McCullough DA, Harrison PG, Forshall JM, Irving JB, Hillman RJ: Serum myoglobin and creatine kinase enzymes in acute myocardial infarction treated with Anistreplase. J Clin Pathol 1992;45:405–407.

    Article  PubMed  CAS  Google Scholar 

  63. Rapaport E: The fractional disappearance rate of the separate isoenzymes of creatine Phosphokinase in the dog. Cardiovas Res 1975;9:473–477.

    Article  CAS  Google Scholar 

  64. Stone MJ, Willerson JT, Gomez-Sanchez CE, Waterman MR: Radioimmunoassay of myoglobin in human serum: results in patients with acute myocardial infarction. J Clin Invest 1975;56:1334–1339.

    Article  PubMed  CAS  Google Scholar 

  65. Nrregaard-Hansen K, Hangaard J, Nrgaard-Pedersen B: A rapid latex agglutination test for detection of elevated levels of myoglobin in serum and its value in the early diagnosis of acute myocardial infarction. Scand J Clin Lab Invest 1984;44:99–103.

    Article  Google Scholar 

  66. Vrenna L, Castaldo AM, Castaldo P, et al: Comparison between nephelometric and RIA methods for serum myoglobin, and efficiency of myoglobin assay for early diagnosis of myocardial infarction. Clin Chem 1992;38:789–790.

    PubMed  CAS  Google Scholar 

  67. Silva Jr DP, Landt Y, Porter SE, Ladenson JH: Development and application of monoclonal antibodies to human cardiac myoglobin in a rapid fluorescence immunoassay. Clin Chem 1991;37:1356–1364.

    PubMed  CAS  Google Scholar 

  68. Katus HA, Scheffold T, Remppis A, Zehlein J: Proteins of the troponin complex. Lab Med 1992;23:311–317.

    Google Scholar 

  69. Bodor GS, Porter S, Landt Y, Ladenson JH: Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin Chem 1992;38:2203–2214.

    PubMed  CAS  Google Scholar 

  70. Larue C, Calzolari C, Bertinchant J-P, Leclercq F, Grolleau R, Pau B: Cardiac-specific immunoenzymometric assay of troponin I in the early phase of acute myocardial infarction. Clin Chem 1993;39:972–979.

    PubMed  CAS  Google Scholar 

  71. Adams JE, Abendschein DR, Jaffe AS: Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation 1993;88:750–763.

    Article  PubMed  CAS  Google Scholar 

  72. Apple FS: Acute myocardial infarction and coronary reperfusion. Serum cardiac markers for the 1990s. Clin Chem 1992;97:217–226.

    CAS  Google Scholar 

  73. Abendschein DR: Detection of recanalization with the use of creatine kinase-MM subforms. Cor Art Dis 1992;3:461–467.

    Article  Google Scholar 

  74. Grande P, Clemmensen P, Ohman EM, Wagner GS: Biochemical markers of early reperfusion. J Electrocardiol 1992;25:6–9.

    Article  PubMed  Google Scholar 

  75. Abendschein DR: Early assessment of the success of thrombolytic therapy by noninvasive markers. Cor Art Dis 1993;4:669–671.

    Article  CAS  Google Scholar 

  76. Hohnloser SH, Zabel M, Kasper W, Meinertz T, Just H: Assessment of coronary artery patency after thrombolytic therapy: Accurate prediction utilizing the combined analysis of three noninvasive markers. J Am Coll Cardiol 1991;18:44–49.

    Article  PubMed  CAS  Google Scholar 

  77. Puleo PR, Guadagno PA, Roberts R, et al: Early diagnosis of acute myocardial infarction based on assay for subforms of creatine kinase-MB. Circulation 1990;82:759–764.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abendschein, D.R. (1994). Biochemical Markers of Coronary Recanalization After Fibrinolytic Therapy. In: Becker, R.C. (eds) The Modern Era of Coronary Thrombolysis. Developments in Cardiovascular Medicine, vol 160. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2618-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2618-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6122-0

  • Online ISBN: 978-1-4615-2618-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics