Advertisement

The influence of the cytosolic oncotic pressure on the permeability of the mitochondrial outer membrane for ADP: implications for the kinetic properties of mitochondrial creatine kinase and for ADP channelling into the intermembrane space

  • Frank Norbert Gellerich
  • Matthias Kapischke
  • Wolfram Kunz
  • Wolfram Neumann
  • Andrey Kuznetsov
  • Dieter Brdiczka
  • Klaas Nicolay
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 13)

Summary

Cytosolic proteins as components of the physiological mitochondrial environment were substituted by dextrans added to media normally used for incubation of isolated mitochondria. Under these conditions the volume of the intermembrane space decreases and the contact sites between the both mitochondrial membranes increase drastically. These morphological changes are accompanied by a reduced permeability of the mitochondrial outer compartment for adenine nucleotides as it was shown by extensive kinetic studies of mitochondrial enzymes (oxidative phosphorylation, mi-creatine kinase, mi-adenylate kinase). The decreased permeability of the mitochondrial outer membrane causes increased rate dependent concentration gradients in the micromolar range for adenine nucleotides between the intermembrane space and the extramitochondrial space. Although all metabolites crossing the outer membrane exhibit the same concentration gradients, considerable compartmentations are detectable for ADP only due to its low extramitochondrial concentration. The consequences of ADP-compartmentation in the mitochondrial intermembrane space for ADP-channelling into the mitochondria are discussed. (Mol Cell Biochem 133/134: 85–104, 1994)

Key words

mitochondria creatine kinase adenylate kinase compartmentation oncotic pressure metabolic channelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colombini M, Yeung CL, Tung J, König T: The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim Biophys Acta 905: 279–286, 1987PubMedCrossRefGoogle Scholar
  2. 2.
    Zalmann LS, Nikaido H, Kagawa Y: Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J Biol Chem 255: 1771–1774, 1980Google Scholar
  3. 3.
    Glick BS, Beasley EM, Schatz G: Protein sorting in mitochondria. TIBS 17: 453–459, 1992PubMedGoogle Scholar
  4. 4.
    Brdiczka D: Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta 1071: 291–312, 1991Google Scholar
  5. 5.
    Vial C, Godinot C, Gautheron D: Membranes creatine kinase (E.C. 2.7.3.2.) in pig heart mitochondria. Properties and role in phosphate potential regulation. Biochimie 54: 843–852, 1972PubMedCrossRefGoogle Scholar
  6. 6.
    Bessman SP, Gots RE: The hexokinase acceptor theory of insulin action - Hormone control of functional compartmentation. Life Sci 16: 1215–1225, 1975PubMedCrossRefGoogle Scholar
  7. 7.
    Saks VA, Chernousova GB, Gukovski DE, Smirnov VN, Chazov EI: Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase, kinetic properties and regulatory action of Mg2+ ions. Eur J Biochem 57: 237–2290, 1975CrossRefGoogle Scholar
  8. 8.
    Gellerich FN, Augustin HW: Studies on the functional significance of mitochondrial bound hexokinase in rabbit reticulocytes. Acta Biol Med Germ 36: 571–577, 1977PubMedGoogle Scholar
  9. 9.
    Gosalvez M, Perez-Garcia J, Weinhouse S: Competition for ADP between pyruvate kinase and mitochondrial oxidative phosphorylation as a control mechanism in glycolysis. Eur J Biochem 46: 133–140, 1974PubMedCrossRefGoogle Scholar
  10. 10.
    Gellerich FN, Saks VA: Control of heart mitochondrial oxygen consumption by creatine kinase: The importance of enzyme localization. Biochem Biophys Res Commun 1105: 1473–1481, 1982CrossRefGoogle Scholar
  11. 11.
    Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat heart mitochondria. Biochim Biophys Acta 722: 381–391, 1987CrossRefGoogle Scholar
  12. 12.
    Gellerich FN: The role of adenylate kinase in dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space. FEBS Lett 297: 55–58, 1992PubMedCrossRefGoogle Scholar
  13. 13.
    Kottke M, Adams V, Wallimann T, Nalam VK, Brdiczka D: Localization and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta 1061: 215–225, 1991PubMedCrossRefGoogle Scholar
  14. 14.
    Gellerich FN, Bohnensack R, Kunz W: Control of mitochondrial respiration: The contribution of the adenine nucleotide translocator depends on the ATP and ADP consuming enzymes. Biochim Biophys Acta 722: 381–391, 1983PubMedCrossRefGoogle Scholar
  15. 15.
    Watanabe K, Itakura T, Kubo S: Distribution of adenylate kinase isozymes in porcine tissues and their subcellular localization. J Biochem 85: 799–805, 1979PubMedGoogle Scholar
  16. 16.
    Gellerich FN, Bohnensack R, Kunz W: Role of the mitochondrial outer membrane in dynamic compartmentation of adenine nucleotides. In: A Azzi, KA Nalecz, MJ Nalecz, L Wojtczak (eds) The Anion Carriers of the Mitochondrial Membranes. Springer Verlag, Berlin Heidelberg. 1989, pp 349–359CrossRefGoogle Scholar
  17. 17.
    Gellerich FN, Kunz W: Cause and consequences of dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space in respect to exchange of energy rich phosphates between cytosol and mitochondria. Biomed Biochim Acta 46: 545–548, 1987Google Scholar
  18. 18.
    Bohnensack R: Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio. Biomed Biochim Acta 43: 403–411, 1984PubMedGoogle Scholar
  19. 19.
    Gellerich FN, Khuchua ZA, Kuznetsov A: Influence of the mitochondrial outer membrane and the binding of creatine kinase to the mitochondrial inner membrane on the compartmentation of adenine nucleotides in the intermembrane space of rat heart mitochondria. Biochim Biophys Acta 1140: 327–334, 1993PubMedCrossRefGoogle Scholar
  20. 20.
    Kushmerick MJ, Podolsky RJ: Ionic mobility in muscle cells. Science 166: 1297–1298, 1969PubMedCrossRefGoogle Scholar
  21. 21.
    Roos M, Benz R, Brdiczka D: Identification and characterization of the pore forming protein in the outer membrane of rat liver mitochondria. Biochim Biophys Acta 686: 204–214, 1982PubMedCrossRefGoogle Scholar
  22. 22.
    Schwerzman K, Cruz-Orive LM, Eggman R, Sänger A, Weibel ER: Molecular architecture of the inner membrane of mitochondria from rat liver: A combined biochemical and stereological study. J Cell Biol 102: 97–103, 1986CrossRefGoogle Scholar
  23. 23.
    Bessman SP, Carpenter CL: The creatine-creatine phosphate energy shuttle. Ann Rev Biochem 54: 831–865, 1985PubMedCrossRefGoogle Scholar
  24. 24.
    Brooks SPJ, Sueter CH: Compartmentated coupling of chicken heart mitochondrial creatine kinase to the nucleotide translocase requires the outer mitochondrial membrane. Arch Biochem Biophys 267: 13–22, 1987CrossRefGoogle Scholar
  25. 25.
    Saks VA, Vasiléva E, Belikova YuO, Kuznetsov AV, Lyapina S, Petrova L, Perov NA: Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim Biophys Acta 1144: 134–148, 1993PubMedCrossRefGoogle Scholar
  26. 26.
    Heineman FW, Balaban RS: Control of mitochondrial respiration in the heart in vivo. Annu Rev Physiol 52: 523–542, 1990PubMedCrossRefGoogle Scholar
  27. 27.
    Saks VA, Kupriyanov VV, Elizarova GV, Jacobus WE: Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J Biol Chem 255: 755–763, 1983Google Scholar
  28. 28.
    Kuznetsov VA, Khuchua ZA, Vassileva EV, Medvedeva NV, Saks VA: Heart mitochondrial creatine kinase revisited: The outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Arch Biochem Biophys 268: 176–190, 1989PubMedCrossRefGoogle Scholar
  29. 29.
    Wenger WC, Murphy MP, Brierley GP, Altshuld RA: Effect of ionic strength and sulfhydryl reagents on the binding of creatine phosphokinase to heart mitochondrial inner membranes. J Bioenerg Biomembr 17: 295–303, 1986CrossRefGoogle Scholar
  30. 30.
    Fossel ET, Hoefeler H: A synthetic functional metabolic compartment. The role of propinquity in a linked pair of immobilized enzymes. Eur J Biochem 170: 165–171, 1987Google Scholar
  31. 31.
    Mattiasson B, Mosbach K: Studies on a matrix-bound three-enzyme system. Biochim Biophys Acta 235: 253–257, 1971PubMedCrossRefGoogle Scholar
  32. 32.
    Hall N, DeLuca M: The effect of inorganic phosphate on creatine kinase in respiring rat heart mitochondria. Arch Biochem Biophys 229: 477–482, 1984PubMedCrossRefGoogle Scholar
  33. 33.
    Saks VA, Khuchua ZA, Kuznetsov AV: Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase. Biochim Biophys Acta 891: 138–144, 1987PubMedCrossRefGoogle Scholar
  34. 34.
    Woijceszyn JW, Wu ES, Jacobsen KA: Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci USA 78: 4407–4410, 1981CrossRefGoogle Scholar
  35. 35.
    Cameron IL, Fullerton GD: A model to explain the osmotic behavior of hemoglobin and serum albumin. Biochem Cell Biol 68: 894–898, 1990PubMedCrossRefGoogle Scholar
  36. 36.
    Bakeeva LE, Chentsov YS, Jasaitis AA, Skulachev VP: The effect of oncotic pressure on heart muscle mitochondria. Biochim Biophys Acta 275: 319–332, 1972PubMedCrossRefGoogle Scholar
  37. 37.
    Wrogemann K, Nylen EG, Adamson I, Pande SV: Functional studies on in s/íw-like mitochondria isolated in the presence of polyvinyl pyrrolidon. Biochim Biophys Acta 806: 1–8, 1986CrossRefGoogle Scholar
  38. 38.
    Wicker U, Bücheler K, Gellerich FN, Wagner M, Kapischke M, Brdiczka D: Effect of macromolecules on the structure of the mitochondrial inter-membrane space and the regulation of hexokinase. Biochim Biophys Acta 1142: 228–239, 1993PubMedCrossRefGoogle Scholar
  39. 39.
    Srere PA: Complexes of sequential enzymes. Annu Rev Biochem 56: 89–124, 1987PubMedCrossRefGoogle Scholar
  40. 40.
    Gellerich FN, Wagner M, Kapischke M, Wicker U, Brdiczka D: Effect of macromolecules on the regulation of the mitochondrial outer membrane pore and the activity of adenylate kinase in the inter-membrane space. Biochim Biophys Acta 1142: 217–227, 1993PubMedCrossRefGoogle Scholar
  41. 41.
    Gellerich FN, Kapischke M, Wagner M, Brdiczka D: Influence of macromolecules on the permeability of porin pores and dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space. In: M Colombini, M Forte (eds) Proceedings on the NATO advanced research workshop (ARW) on: Molecular biology of mitochondrial transport systems. Springer Verlag, Berlin Heidelberg, 1993Google Scholar
  42. 42.
    Zimmerberg J, Persegian VA: Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323: 36–39, 1986PubMedCrossRefGoogle Scholar
  43. 43.
    Bittl JA, Ingwall JS: Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem 260: 3512–3517, 1985PubMedGoogle Scholar
  44. 44.
    Meyer RA, Brown TR, Kushmerick MJ: Phosphorus nuclear magnetic resonance of fast- and slow-twich muscle. Am J Physiol 248: C279–C287, 1985PubMedGoogle Scholar
  45. 45.
    Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281: 21–40, 1992PubMedCentralPubMedGoogle Scholar
  46. 46.
    Stucki JW: The thermodynamic-buffer enzymes. Eur J Biochem 109: 257–267, 1980PubMedCrossRefGoogle Scholar
  47. 47.
    Iyengar MR, Fluellen CE, Iyengar CL: Creatine kinase from the bovine myometrium: purification and characterization. J Muscle Res Cell Motil 3: 231–246, 1982PubMedCrossRefGoogle Scholar
  48. 48.
    Kupriyanov VV, Seppet EK, Emilin IV, Saks VA: Phosphocreatine production coupled to the glycolytic reactions in the cytosol of cardiac cells. Biochim Biophys Acta 592: 197–210, 1980PubMedCrossRefGoogle Scholar
  49. 49.
    Ackermann JH, Grove TH, Wong GG, Gadian DG, Radda GK: Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature, London 283: 167–170, 1980CrossRefGoogle Scholar
  50. 50.
    Denton RM, McCormack JG: On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett 119: 1–8, 1980PubMedCrossRefGoogle Scholar
  51. 51.
    Jones DP: Intracellular diffusion gradients of O2 and ATP. Am J Phys 250: C663–C675, 1986Google Scholar
  52. 52.
    Miller DS, Horowitz SB: Intracellular compartmentalization of adenosine triphosphate. J Biol Chem 261: 13911–13916, 1986PubMedGoogle Scholar
  53. 53.
    Wittenberg JB: Myoglobin-facilitated oxygen diffusion: Role of myoglobin in oxygen entry in the muscle. Phys Rev 50: 559–636, 1970Google Scholar
  54. 54.
    Meyer RA, Sweeny L, Kushmerick MJ: A simple analysis of the ‘phosphocreatine shuttle’. Am J Physiol 246: C365–C377, 1984PubMedGoogle Scholar
  55. 55.
    Bessman SP, Carpenter CL: The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54: 831–862, 1985PubMedCrossRefGoogle Scholar
  56. 56.
    Schoff PK, Cheetham J, Lardy HA: Adenylate kinase activity in ejaculated bovine sperm flagella. J Biol Chem 264: 6086–6091, 1989PubMedGoogle Scholar
  57. 57.
    Zeleznikar RJ, Heyman RA, Graeff RM, Waslseth TF, Davis SM, Butz EA, Goldberg ND: Evidence for compartmentalized adenylate kinase catalyzis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265: 300–311, 1990PubMedGoogle Scholar
  58. 58.
    Bittl JA, DeLayre J, Ingwall JS: Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart and skeletal muscle of the living rat. Biochem ioltry 26: 6083–6090, 1987CrossRefGoogle Scholar
  59. 59.
    Kunz WS, Kuznetsov AV, Schulze W, Eichhorn K, Schild L, Striggow F, Bohnensack R, Neuhof S, Grashoff H, Neumann HW, Gellerich FN: Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. Biochim Biophys Acta 1144: 46–53, 1993PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Frank Norbert Gellerich
    • 1
    • 2
  • Matthias Kapischke
    • 3
  • Wolfram Kunz
    • 3
  • Wolfram Neumann
    • 4
  • Andrey Kuznetsov
    • 5
  • Dieter Brdiczka
    • 6
  • Klaas Nicolay
    • 1
  1. 1.Dept. of in vivo NMR spectroscopy, Bijvoet Center for Biomolecular ResearchUtrecht UniversityThe Netherlands
  2. 2.Department of Transplant Surgery, Clinical and Interdisciplinary BioenergeticsUniversity Hospital of InnsbruckAustria
  3. 3.Institut für BiochemieUniversität MagdeburgGermany
  4. 4.Klinik für Orthopädie der Medizinischen Fakultät der Universität MagdeburgGermany
  5. 5.Laboratory of BioenergeticsCardiology Research CenterMoscowRussia
  6. 6.Fakultät für BiologieUniversität KonstanzGermany

Personalised recommendations