Skip to main content

Growth Factor and Oncogene Signalling as a Target for Anticancer Drug Development

  • Chapter
  • 148 Accesses

Part of the book series: Developments in Oncology ((DION,volume 74))

Abstract

Only a limited number of human cancers can be cured and most human solid cancers, accounting for over 75% of cancer deaths in the U.S.A., are refractory to chemotherapy (1). After more than four decades of trying, it is clear that radically new approaches to developing cancer drugs are needed if we are to effectively treat cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weimann MC, Calabresi P: Pharmacology of antineo-plastic agents. In: Medical Oncology. Calabresi P, Schein PS, Rosenberg SA (eds), McMillan Publishing Co., New York, pp. 292–362, 1985.

    Google Scholar 

  2. Cantley LC, Auger KR, Carpenter C, et al: Oncogenes and signal transduction. Cell 64:281–302, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Macara IG: Oncogenes and cellular signal transduction. Physiol. Rev. 69:797–820, 1989.

    PubMed  CAS  Google Scholar 

  4. Druker BJ, Mamon HJ, Roberts TM: Oncogenes growth factors and signal transduction. N. Engl. J. Med. 321:1383–1391, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Deuel TF: Polypeptide growth factors: Roles in normal and abnormal cell growth. Annu. Rev. Cell Biol. 3:443–492, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Young D, Waitches G, Birchmeier C, et al: Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45:711–719, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Battey JF, Way JM, Corjay MH, et al: Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc. Natl. Acad. Sci. USA 88:395–399, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Ryu SH, Kim U-H, Wahl MI, et al: Feedback regulation of phospholipase C-ß by protein kinase C. J. Biol. Chem. 265:17941–17945, 1990.

    PubMed  CAS  Google Scholar 

  9. Downes CP: G protein-dependent regulation of phospholipase C. Trends Pharmacol. Sci. Suppl:39–42, 1989.

    Google Scholar 

  10. Kriz R, Lin L-L, Sultzman L, t al: Phospholipase C isozymes: Structural and functional similarities. In: 1990 Proto-Oncogenes in Cell Development. Ciba Foundation Symposium, Wiley, Chichester, pp. 112–127, 1990.

    Google Scholar 

  11. Meldrum E, Parker PJ, Carozzi A: The Ptdlns-PLC superfamily and signal transduction. Biochim. Biophys. Acta 1092:49–71, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341:197–205, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Kikkawa U, Nishizuka Y: The role of protein kinase C in transmembrane signalling. Annu. Rev. Cell Biol. 2:149–178, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Whitman M, Cantley L: Phosphoinositide metabolism and the control of cell proliferation. Biochim. Biophys. Acta 948:327–344, 1988.

    CAS  Google Scholar 

  15. Irvine RF, Moore RM, Pollock WK, et al: Inositol phosphates: Proliferation, metabolism and function. Philos. Trans. R. Soc. Lond. B 320:281–298, 1988.

    Article  CAS  Google Scholar 

  16. Irvine RF, Moore RM: Microinjection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem. J. 240:917–920, 1986.

    PubMed  CAS  Google Scholar 

  17. Bishayee S, Majumdar S, Khire J, Das M: Ligandinduced dimerization of the platelet-derived growth factor receptor. J. Biol. Chem. 264:11699–11705, 1989.

    PubMed  CAS  Google Scholar 

  18. Nishimura J, Huang JS, Deuel TF: Platelet-derived growth factor stimulates tyrosine specific protein kinase activity in Swiss mouse 3T3 cell membranes. Proc. Natl. Acad. Sci. USA 79:4303–43O7, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Moran MF, Koch CA, Anderson D, et al: Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA 87:8622–8626, 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan DR, Whitman M, Schaffhausen B, et al: Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50: 1021–1029, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Serunian LA, Haber MT, Fukui T, et al: Polyphosp-hoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J. Biol. Chem. 264:17809–17815, 1989.

    PubMed  CAS  Google Scholar 

  22. Escobedo JA, Williams LT: A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature 335:85–87, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. McCormick F: The world according to GAP. Oncogene 5:1281–1283, 1990.

    PubMed  CAS  Google Scholar 

  24. Kazlauskas A, Ellis C, Pawson T, Cooper JA: Binding of GAP to activated PDGF receptors. Science 247:1578–1581, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Morrison DK, Kaplan DR, Rhee SG, Williams LT: Platelet-derived growth factor (PDGF)-dependent association of phospholipase C-gamma with the PDGF receptor signaling complex. Mol. Cell. Biol. 10:2359–2366, 1990.

    PubMed  CAS  Google Scholar 

  26. Sultzman L, Ellis C, Lin L-L, et al: Platelet-derived growth factor increases the in vivo activity of phospholipase C-gamma1 and phospholipase C-gamm-a2. Mol. Cell. Biol. 11:2018–2025, 1991.

    PubMed  CAS  Google Scholar 

  27. Morrison DK, Kaplan DR, Rapp U, Roberts TM: Signal transduction from membrane to cytoplasm: Growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc. Natl. Acad. Sci. USA 85: 8855–8859, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. L’Allemain G, Paris S, Pouyssegur J: Growth factor action and intracellular pH regulation in fibroblasts. J. Biol. Chem. 259:5809–5812, 1984.

    PubMed  Google Scholar 

  29. Rozengurt E: Signal transduction pathways in mitogenesis. Brit. Med. Bull. 45:515–528, 1989.

    PubMed  CAS  Google Scholar 

  30. Shier WT, Durkin JP: Role of stimulation of arachidonic acid release in the proliferative response of 3T3 mouse fibroblasts to platelet-derived growth factor. J. Cell. Physiol. 112:171–181, 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Trepel JB, Moyer JD, Cuttitta F, et al: A novel bombesin receptor antagonist inhibits autocrine signals in a small cell lung carcinoma cell line. Biochem. Biophys. Res. Commun. 156:1383–1389, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Coffey RJ, Leof EB, Shipley GD, Moses HL: Suramin inhibition of growth factor receptor binding and mitogenicity in AKR-2B cells. J. Cell. Physiol. 132:143–148, 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Seewald MJ, Olsen RA, Powis G: Suramin blocks intracellular Ca2+ release and growth factor-induced increases in cytoplasmic free Ca2+ concentration. Cancer Lett. 49:107–113, 1989.

    Article  Google Scholar 

  34. Powis G, Seewald MJ, Sehgal I, et al: Platelet-derived growth factor stimulates non-mitochondrial Ca2+ uptake and inhibits mitogen-induced Ca2+ signalling in Swiss 3T3 fibroblasts. J. Biol. Chem.265:10266–10273, 1990.

    PubMed  CAS  Google Scholar 

  35. Newman ME: AIDS drug gets trial as cancer therapy. J. Natl. Cancer lnst. 82:167–168, 1990.

    Google Scholar 

  36. La Rocca RV, Stein CA, Myers CE: Suramin: Prototype of a new generation of antitumor compounds.Cancer Cells 2:106–115, 1990.

    PubMed  Google Scholar 

  37. Herbert J-M, Maffrand, J-P: Effect of pentosan polysulphate, standard heparin and related compounds on protein kinase C activity. Biochim. Biophys. Acta 1091:432–441, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Hensey CE, Boscoboinik D, Azzi A: Suramin, an anti-cancer drug, inhibits protein kinase C and induces differentiation in neuroblastoma cell clone NB2A. FEBS Lett. 258:156–158, 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Seewald MJ, Olsen R, Melder D, Powis G: High molecular weight dextran sulfate inhibits intracellular Ca2+ release and decreases growth factor-induced increases in intracellular free Ca2+ in Swiss 3T3 fibroblasts. Cancer Commun. 1:151–156, 1989.

    PubMed  CAS  Google Scholar 

  40. Tones MA, Bootman MD, Higgins OF, et al: The effect of heparin on the inositol 1,4,5-trisphosphate receptor in rat liver microsomes. FEBS Lett. 252:105–108, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Farago A, Nishizuka Y: Protein kinase C in transmembrane signalling. FEBS Lett. 2:350–354, 1990.

    Article  Google Scholar 

  42. Gescher A, Dale IL: Protein kinase C-a novel target for rational anti-cancer drug design? Anti-Cancer Drug Design 4:93–105, 1989.

    PubMed  CAS  Google Scholar 

  43. Borner C, Guadagno SN, Hsien LL, et al: Transformation by a ras oncogene causes increased expression of protein kinase C-alpha and decreased expression of protein kinase C-epsilon. Cell Growth Differ. 1:653–660, 1990.

    PubMed  CAS  Google Scholar 

  44. Pelosin J-M, Keramidas M, Souvignet C, Chambaz EM: Differential inhibition of protein kinase C subtypes. Biochem. Biophys. Res. Commun. 169:1040–1048, 1990.

    Article  PubMed  CAS  Google Scholar 

  45. O’Brian CA, Housey GM, Weinstein IB: Specific and direct binding of protein kinase C to an immobilized tamoxifen analogue. Cancer Res. 48:3626–3632, 1988.

    PubMed  Google Scholar 

  46. Hannun YA, Foglesong RJ, Bell RM: The adriamycin-iron (III) complex is a potent inhibitor of protein kinase C. J. Biol. Chem. 264:9960–9966, 1989.

    PubMed  CAS  Google Scholar 

  47. Helfman DM, Barnes KC, Kinkade JM, et al: Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysoph-ospholipid. Cancer Res. 43:2955–2961, 1983.

    PubMed  CAS  Google Scholar 

  48. Jones RJ, Sharkis SJ, Miller CB, et al: Bryostatinostatin 1, a unique biologic response modifier: Anti-leukemic activity in vitro. Blood 75:1319–1323, 1990.

    PubMed  CAS  Google Scholar 

  49. Cho-Chung YS: Site-selective 8-chloro-cyclic adenosine 3’,5’-monophosphate as a biologic modulator of cancer: Restoration of normal control mechanisms. J. Natl. Cancer lnst. 81:982–987, 1989.

    Article  CAS  Google Scholar 

  50. Seewald MJ, Olsen RA, Sehgal I, et al: Inhibition of growth factor-dependent inositol phosphate Ca2+ signalling by antitumor ether lipid analogues. Cancer Res. 50:4458–4463, 1990.

    PubMed  CAS  Google Scholar 

  51. Uberall F, Oberhuber H, Maly K, et al: Hexadecylp-hosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res. 51:807–812, 1991.

    PubMed  CAS  Google Scholar 

  52. Powis G, Seewald MJ, Aksoy I, et al: Inhibition of phosphatidylinositol specific phospholipase C (PI PLC) by ether lipid analogues. Proc. Am. Assoc. Cancer Res. 32:399, 1991.

    Google Scholar 

  53. Putney JW, Jr: Receptor-regulated calcium entry. Pharmacol. Ther. 48:427–434, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt WF, Huber KR, Ettinger RS, Neuberg RW: Antiproliferative effect of verapamil alone on brain tumor cells in vitro. Cancer Res. 48:3617–3621, 1988.

    PubMed  CAS  Google Scholar 

  55. Worley JF, Strobl JS: Voltage-dependent calcium channels in MCF-7 human breast cancer cells and inhibition of cell growth by calcium channel antagonists. Cancer Chemother. Pharmacol. 24:S84, 1989.

    Google Scholar 

  56. Kohn EC, Liotta LA: L6S1582: A novel antiproliferative and antimetastasis agent. J. Nat. Cancer lnst. 82:54–60, 1990.

    Article  CAS  Google Scholar 

  57. Hupe DJ, Boltz R, Cohen CJ, et al: The inhibition of receptor-mediated and voltage-dependent calcium entry by the antiproliferative L-651, 582. J. Biol. Chem. 266:10136–10142, 1991.

    PubMed  CAS  Google Scholar 

  58. Hupe DJ, Behrens ND, Boltz R: Anti-proliferative activity of L-651, 582 correlates with calcium-mediated regulation of nucleotide metabolism at phosphoribosyl pyrophosphate synthetase. J. Cell. Physiol. 144:457–466, 1990.

    Article  PubMed  CAS  Google Scholar 

  59. Powis G, Aksoy IA, Melder DC, et al: D-3-deoxy-3-substituted myo-inositol analogues as inhibitors of cell growth. Cancer Chemother. Pharmacol. 29:95–104, 1991.

    CAS  Google Scholar 

  60. Fauq AH, Kozikowski AP, Powis G, Melder DC: D-3-modified myo-inositol analogues: Synthesis and growth inhibitory properties. J. Med. Chem. 1:277–282, 1991.

    Google Scholar 

  61. Kozikowski AP, Fauq AH, Aksoy IA, et al: Synthesis of the first optically pure, fluorinated inositol 1,4,5-trisphosphate of myo-inositol stereochemistry and its effect on Ca2+ release in Swiss 3T3 cells. J. Am. Chem. Soc. 112:7403–7404, 1990.

    Article  CAS  Google Scholar 

  62. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Akiyama T, Ishida J, Nakagawa S, et al: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262:5592–5595, 1987.

    PubMed  CAS  Google Scholar 

  64. Markovits J, Linassier C, Fosse P, et al: Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 49:5111–5117, 1989.

    PubMed  CAS  Google Scholar 

  65. Umezawa H, Imoto M, Sawa T, et al: Studies on a new epidermal growth factor-receptor kinase inhibitor, erbstatin, produced by MH435-hF3. J. Antibiot. 39:170–173, 1986.

    Article  PubMed  CAS  Google Scholar 

  66. Markovits J, Saucier JM, Larsen AK, et al: Effect of the tyrosine kinase inhibitor, erbstatin, on DNA topoisomerases. Proc. Am. Assoc. Cancer Res. 31:439, 1990.

    Google Scholar 

  67. Toi M, Mukaida H, Wada T, et al: Antineoplastic effect of erbstatin on human mammary and esophageal tumors in athymic nude mice. Eur. J. Cancer 26:722–724, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Imoto M, Umezawa K, Komuro K, et al: Antitumor activity of erbstatin, a tyrosine protein kinase inhibitor. Jpn. J. Cancer Res. 78:329–332, 1987.

    PubMed  CAS  Google Scholar 

  69. Levitzki A, Gilon C: Tyrphostins as molecular tools and potential antiproliferative drugs. Trends Pharmacol. Sci. 12:171–176, 1991.

    Article  PubMed  CAS  Google Scholar 

  70. Lyall RM, Zilbertstein A, Gazit A, et al: Tyrphostins inhibit epidermal growth factor (EGF)-receptor tyrosine kinase activity in living cells and EGF-stimulated cell proliferation. J. Biol. Chem. 264:14503–14509, 1989.

    PubMed  CAS  Google Scholar 

  71. Shiraishi T, Owada MK, Tatsuka M, et al: Specific inhibitors of tyrosine-specific protein kinases: Properties of 4-hydroxycinnamamide derivatives in vitro. Cancer Res. 49:2374–2378, 1989.

    PubMed  CAS  Google Scholar 

  72. Uehara Y, Fukazawa H, Murakami Y, Mizuno S: Irreversible inhibition of v-src tyrosine kinase activity by herbimycin A and its abrogation by sulf-hydryl compounds. Biochem. Biophys. Res. Commun. 163:803–809, 1989.

    Article  PubMed  CAS  Google Scholar 

  73. Geissler JF, Traxler P, Regenass U, et al: Thiazolidine-diones. Biochemical and biological activity of a novel class of tyrosine protein kinase inhibitors. J. Biol. Chem. 265:22255–22261, 1990.

    PubMed  CAS  Google Scholar 

  74. Wacker O, Traxler P, Kump W, et al: Sulfonylbenzoyl-nitrostyroles-a novel class of selective tyrosine kinase inhibitors. Proc. Am. Assoc. Cancer Res. 31:351, 1990.

    Google Scholar 

  75. Hunter T: Protein-tyrosine phosphatases: The other side of the coin. Cell 58:1013–1016, 1989.

    Article  PubMed  CAS  Google Scholar 

  76. Beato M: Gene regulation by steroid hormones. Cell 56:335–344, 1989.

    Article  PubMed  CAS  Google Scholar 

  77. Bohmann D: Transcription factor phosphorylation: A link between signal transduction and the regulation of gene expression. Cancer Cells 2:337–344, 1990.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powis, G. (1994). Growth Factor and Oncogene Signalling as a Target for Anticancer Drug Development. In: Valeriote, F.A., Corbett, T.H., Baker, L.H. (eds) Anticancer Drug Discovery and Development: Natural Products and New Molecular Models. Developments in Oncology, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2610-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2610-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6118-3

  • Online ISBN: 978-1-4615-2610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics