Advertisement

Marine Invertebrates and Microbes as Sources of Potential Antitumor Compounds

  • Andrew L. Staley
  • Jon Clardy
Chapter
Part of the Developments in Oncology book series (DION, volume 74)

Abstract

As part of the NCI’s broader goal of finding new leads to therapeutic agents in cancer chemotherapy, our National Cooperative Natural Product Drug Discovery Group (NCNPDDG) was organized to access a relatively understudied source of natural product leads: marine microbes and sessile marine organisms. We present here an overview of the structure of our group, a brief outline of our overall goals and strategy, and a summary of the advances we have made toward those goals.

Keywords

Epidermal Growth Factor Human Epidermal Growth Factor Receptor Marine Sponge Marine Natural Product Philippine Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catino JJ, Francher DM, Edinger KJ, Stringfellow DA: A microtitre cytotoxicity assay useful for the discovery of fermentation-derived antitumor agents.Cancer Chemother. Pharmacol. 15:240–243, 1985.PubMedCrossRefGoogle Scholar
  2. 2.
    Long BH, Stringfellow DA: Inhibitors of topoisomerase II: Structure-activity relationships and mechanism of action of podophyllin congeners. In: Advances in Enzyme Regulation, G Weber (ed), Pergamon press, New York, 1988, Vol. 27, pp. 223–256.Google Scholar
  3. 3.
    Rominson IB, Abelson HT, Housman DE, et al: Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells. Nature. 309:626–628, 1984.CrossRefGoogle Scholar
  4. 4.
    Gerinn JH, Endicott JA, Juranka PF, et al: Homology between P-glycpprotein and a bacterial haemolysin transport protein suggests a model for multi-drug resistance. Nature 324:485–495, 1966.Google Scholar
  5. 5.
    Crosswell AR: Personal communication.Google Scholar
  6. 6.
    Mamber SW, Okasinski WG, Pinter CD, Tunac JB: The Escherichia coli K12 SOS chromotest agar spot test for simple, rapid detection of genotoxic agents. Mutation Res. 171:83–90, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker GC: Inducible DNA repair systems. Ann. Rev. Biochem. 54:425–457, 1985,PubMedCrossRefGoogle Scholar
  8. 8.
    Velu TJ, Beguinot L, Vass wc, et al: Epidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238:1408–1410, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Di Fiore PP, Pierce JH, Fleming TP, et al: Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063–1070, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Ullriph A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212, 1990.CrossRefGoogle Scholar
  11. 11.
    Sartorelli AC: Malignant cell differentiation as a potential therapeutic approach. Br. J. Cancer 52:293–302, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Reiss M, Gamba-Vitalo C, Sartorelli AC: Induction of tumor cell differentiation as a therapeutic approach: Preclinical models for hematopoietic and solid neoplasms. Cancer Treat. Rep. 70:201–218, 1986.PubMedGoogle Scholar
  13. 13.
    Catino JJ, Miceli LA: Microtiter assay useful for screening of cell-differentiation agents. J. Natl. Cancer Inst. 80:962–966, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Bishop JM: Cellular oncog§nes and retroviruses. Ann. Rev. Biochem. 52:301–354, 1983.PubMedCrossRefGoogle Scholar
  15. 15.
    Heldin CH, Betsholtz C, Claesson-Welsh L, Westermark B: Subversion of growth regulatory pathways in malignant transformation. Biochim. Biophys. Acta 907:219–244, 1987.PubMedGoogle Scholar
  16. 16.
    A considerably larger number of other samples have been submitted from the ongoing collection efforts at the academic laboratories, but this discussion will focus only on the samples collected in the Philippines.Google Scholar
  17. 17.
    Roll DM, Scheuer PJ, Matsumoto GK, Clardy J: Helenaquinone, a pentacyclic polyketide from a marine sponge. J. Am. Chem. Soc. 105:6177–6188, 1983.CrossRefGoogle Scholar
  18. 18.
    Nakamura H, Kobayashi J, Kobayashi M, et al: Xestoquinone, a novel cardiotonic marine natural product isolated from the Okinawan sea sponge Xestosponaia sapra. Chem. Lett. 6:713–716, 1985.CrossRefGoogle Scholar
  19. 19.
    Fattorusso E, Magno S, Santacroce C, Sica D: S-calarin, a new pentacyclic C-25 terpenoid from the sponge Cacospongia scalaris. Tetrahedron 28:5991–5997, 1972.CrossRefGoogle Scholar
  20. 20.
    Kazlauskas R, Murphy PT, Wells RJ, Daly JJ: Terpenoid constituents from two Phyllosponqia spp. Aust. J. Chem. 33:1783–1797, 1980.CrossRefGoogle Scholar
  21. 21.
    Kazlauskas R, Murphy PT, Wells RJ: Five new C-26 tetracyclic terpenes from a sponge (Lendenfeldia sp.). Aust. J. Chem. 35:51–59, 1982.CrossRefGoogle Scholar
  22. 22.
    Kazlauskas R, Murphy PT, Quinn RJ, Wells RJ: Heteronemin, a new scalarin type sesterterpene from the sponge Heteronemia erecta. Tetrahedron Lett. 30:2631–2634, 1976.CrossRefGoogle Scholar
  23. 23.
    Walker RP, Thompson JE, Faulkner DJ: Sesterterpenes from Spongia idia. J. Org. Chem. 45:4976–4979, 1980.CrossRefGoogle Scholar
  24. 24.
    Luibrand RT, Erdman TR, Vollmer JJ, et al: Ilimaquinone, a sesquiterpenoid quinone from a marine sponge. Tetrahedron 35:609–612, 1979.CrossRefGoogle Scholar
  25. 25.
    Koindrecki M-L, Guyot M: Smenospongine, a cytotoxic and antimicrobial aminoquinone isolated from Smenospongia sp. Tetrahedron Lett. 28:5815–5818, 1987.CrossRefGoogle Scholar
  26. 26.
    Minale L, Riccio R, Sodano G: Avarol, a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Disidea avara. Tetrahedron Lett. 3401–3404, 1974.Google Scholar
  27. 27.
    De Rosa S, Minale L, Riccio R, Sodano G: The absolute configuration of avarol, a rearranged sesquiterpene hydroquinone from a sponge. J. Chem. Soc. Perkin Trans. I. 1408–1414, 1976.CrossRefGoogle Scholar
  28. 28.
    de Silva ED, Scheuer PJ: Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variabilis Pole Jaeff. Tetrahedron Lett. 21:1611–1614, 1980.CrossRefGoogle Scholar
  29. 29.
    de Silva ED, Scheuer PJ: Three new sesterterpenoid antibiotics from the marine sponge Luffariella variabilis Pole Jaeff. Tetrahedron Lett. 22:3147–3150, 1980.CrossRefGoogle Scholar
  30. 30.
    Kernan MR, Faulkner DJ, Jacobs RS: The luffariellins, novel antiinflammatbry sesterterpenes of chemotaxonomic importance from the marine sponge Luffariella variabilis. J. Org. Chem. 52:3081–3083, 1987.CrossRefGoogle Scholar
  31. 31.
    Albizati KF, Holman T, Faulkner DJ, et al: Luffariellolide, an anti-inflammatory sesterterpene from the marine sponge Luffariella sp. Experientia.45:949–950, 1987.CrossRefGoogle Scholar
  32. 32.
    Mclntyre DE, Faulkner DJ, Van Engen D, Clardy J: Renierone, an antimicrobial metabolite from a marine sponge. Tetrahedron Lett. 43:4163–4166, 1979.CrossRefGoogle Scholar
  33. 33.
    Frincke JM, Faulkner DJ: Antimicrobial metabolites of the sponge Reniera sp. J. Am. Chem. Soc. 104:265–269, 1982.CrossRefGoogle Scholar
  34. 34.
    He H-Y, Faulkner DJ: Renieramycins E and F from the sponge Reniera sp.: Reassignment of the stereochemistry of the renieramycins. J. Org. Chem. 54:5822–5824, 1989.CrossRefGoogle Scholar
  35. 35.
    Nakamura H, Kobayashi J, Ohizumi Y: Isolation and structure determination of aaptamine, a novel heteroaromatic substance possessing α-blocking activity from the sea sponge Aaptos aaptos. Tetrahedron Lett. 23:5555–5558, 1982.CrossRefGoogle Scholar
  36. 36.
    Wu H, Nakamura H, Kobayashi J, et al: Structures of agelisines, diterpenes having a 9-methyladeninium chromophore isolated from the Okinawan marine sponge Agelas nakamurai Hoshino. Bull. Chem. Soc. Japan 59:2495–2504, 1986.CrossRefGoogle Scholar
  37. 37.
    Capon RJ, Faulkner DJ: Antimicrobial metabolites from a Pacific sponge, Agelas sp. J. Am. Chem. Soc. 106:1819–1822, 1984.CrossRefGoogle Scholar
  38. 38.
    Forenza S, Minale L, Riccio R, Fattorusso E: New bromo-pyrrole derivatives from the sponge Agelas oroides. J. Chem. Soc. Chem. Comm. 1129–1130, 1971.Google Scholar
  39. 39.
    Garcia EE, Benjamin LE, Fryer RI: Reinvestigation into the structure of oroidon, a bromopyrrole derivative from marine sponge. J. Chem. Soc. Chem. Comm. 78–79, 1973.Google Scholar
  40. 40.
    Walker RP, Faulkner DJ, Van Engen D, Clardy J: Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J. Am. Chem. Soc. 103:6772–6773, 1981.CrossRefGoogle Scholar
  41. 41.
    Lindquist N, Fenical W, Van Duyne GD, Clardy J: Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J. Am. Chem. SOC. 113:2303–2304, 1991.CrossRefGoogle Scholar
  42. 42.
    Sugawara K, Ohbayashi M, Shimizu K, et al: BMY-28438 (3,7-dihydroxytropolone), a new antitumor antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity. J. Antibiotics 41:862–868, 1988.CrossRefGoogle Scholar
  43. 43.
    Rinehart KL, Kishore V, Bible KC, et al: Didemnins and tunichlorin: Novel natural products from the marine tunicate Trididemnum solidum. J. Nat. Prod. 51:1–21, 1988.PubMedCrossRefGoogle Scholar
  44. 44.
    Bible KC, Buytendorp M, Zirath PD, Rinehart KL: Tunichlorin, a nickel chlorin isolated from the Caribbean tunicate Trididemnum solidum. Proc. Natl. Acad. Sci. USA 85:4582–4586, 1988.PubMedCrossRefGoogle Scholar
  45. 45.
    Moore RE, Banarjee S, Bornemann V, et al: Novel cytotoxins and fungicides from blue-green algae and marine animals possessing algal symbionts. Pure & Appl. Chem. 61:521–524, 1989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Andrew L. Staley
  • Jon Clardy

There are no affiliations available

Personalised recommendations